Solve for x (complex solution)
x=\frac{3+\sqrt{71}i}{20}\approx 0.15+0.421307489i
x=\frac{-\sqrt{71}i+3}{20}\approx 0.15-0.421307489i
Graph
Share
Copied to clipboard
20x^{2}-5x=4\left(\frac{x}{4}-1\right)
Multiply both sides of the equation by 20, the least common multiple of 4,5.
20x^{2}-5x=4\times \frac{x}{4}-4
Use the distributive property to multiply 4 by \frac{x}{4}-1.
20x^{2}-5x=\frac{4x}{4}-4
Express 4\times \frac{x}{4} as a single fraction.
20x^{2}-5x=x-4
Cancel out 4 and 4.
20x^{2}-5x-x=-4
Subtract x from both sides.
20x^{2}-6x=-4
Combine -5x and -x to get -6x.
20x^{2}-6x+4=0
Add 4 to both sides.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 20\times 4}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -6 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 20\times 4}}{2\times 20}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-80\times 4}}{2\times 20}
Multiply -4 times 20.
x=\frac{-\left(-6\right)±\sqrt{36-320}}{2\times 20}
Multiply -80 times 4.
x=\frac{-\left(-6\right)±\sqrt{-284}}{2\times 20}
Add 36 to -320.
x=\frac{-\left(-6\right)±2\sqrt{71}i}{2\times 20}
Take the square root of -284.
x=\frac{6±2\sqrt{71}i}{2\times 20}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{71}i}{40}
Multiply 2 times 20.
x=\frac{6+2\sqrt{71}i}{40}
Now solve the equation x=\frac{6±2\sqrt{71}i}{40} when ± is plus. Add 6 to 2i\sqrt{71}.
x=\frac{3+\sqrt{71}i}{20}
Divide 6+2i\sqrt{71} by 40.
x=\frac{-2\sqrt{71}i+6}{40}
Now solve the equation x=\frac{6±2\sqrt{71}i}{40} when ± is minus. Subtract 2i\sqrt{71} from 6.
x=\frac{-\sqrt{71}i+3}{20}
Divide 6-2i\sqrt{71} by 40.
x=\frac{3+\sqrt{71}i}{20} x=\frac{-\sqrt{71}i+3}{20}
The equation is now solved.
20x^{2}-5x=4\left(\frac{x}{4}-1\right)
Multiply both sides of the equation by 20, the least common multiple of 4,5.
20x^{2}-5x=4\times \frac{x}{4}-4
Use the distributive property to multiply 4 by \frac{x}{4}-1.
20x^{2}-5x=\frac{4x}{4}-4
Express 4\times \frac{x}{4} as a single fraction.
20x^{2}-5x=x-4
Cancel out 4 and 4.
20x^{2}-5x-x=-4
Subtract x from both sides.
20x^{2}-6x=-4
Combine -5x and -x to get -6x.
\frac{20x^{2}-6x}{20}=-\frac{4}{20}
Divide both sides by 20.
x^{2}+\left(-\frac{6}{20}\right)x=-\frac{4}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}-\frac{3}{10}x=-\frac{4}{20}
Reduce the fraction \frac{-6}{20} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{10}x=-\frac{1}{5}
Reduce the fraction \frac{-4}{20} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{3}{10}x+\left(-\frac{3}{20}\right)^{2}=-\frac{1}{5}+\left(-\frac{3}{20}\right)^{2}
Divide -\frac{3}{10}, the coefficient of the x term, by 2 to get -\frac{3}{20}. Then add the square of -\frac{3}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{10}x+\frac{9}{400}=-\frac{1}{5}+\frac{9}{400}
Square -\frac{3}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{10}x+\frac{9}{400}=-\frac{71}{400}
Add -\frac{1}{5} to \frac{9}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{20}\right)^{2}=-\frac{71}{400}
Factor x^{2}-\frac{3}{10}x+\frac{9}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{20}\right)^{2}}=\sqrt{-\frac{71}{400}}
Take the square root of both sides of the equation.
x-\frac{3}{20}=\frac{\sqrt{71}i}{20} x-\frac{3}{20}=-\frac{\sqrt{71}i}{20}
Simplify.
x=\frac{3+\sqrt{71}i}{20} x=\frac{-\sqrt{71}i+3}{20}
Add \frac{3}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}