Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}-\left(7x^{2}+3\right)-5\left(x^{2}-3x\right)=20x
Multiply both sides of the equation by 10, the least common multiple of 10,2.
10x^{2}-7x^{2}-3-5\left(x^{2}-3x\right)=20x
To find the opposite of 7x^{2}+3, find the opposite of each term.
3x^{2}-3-5\left(x^{2}-3x\right)=20x
Combine 10x^{2} and -7x^{2} to get 3x^{2}.
3x^{2}-3-5x^{2}+15x=20x
Use the distributive property to multiply -5 by x^{2}-3x.
-2x^{2}-3+15x=20x
Combine 3x^{2} and -5x^{2} to get -2x^{2}.
-2x^{2}-3+15x-20x=0
Subtract 20x from both sides.
-2x^{2}-3-5x=0
Combine 15x and -20x to get -5x.
-2x^{2}-5x-3=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-5 ab=-2\left(-3\right)=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
-1,-6 -2,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 6.
-1-6=-7 -2-3=-5
Calculate the sum for each pair.
a=-2 b=-3
The solution is the pair that gives sum -5.
\left(-2x^{2}-2x\right)+\left(-3x-3\right)
Rewrite -2x^{2}-5x-3 as \left(-2x^{2}-2x\right)+\left(-3x-3\right).
2x\left(-x-1\right)+3\left(-x-1\right)
Factor out 2x in the first and 3 in the second group.
\left(-x-1\right)\left(2x+3\right)
Factor out common term -x-1 by using distributive property.
x=-1 x=-\frac{3}{2}
To find equation solutions, solve -x-1=0 and 2x+3=0.
10x^{2}-\left(7x^{2}+3\right)-5\left(x^{2}-3x\right)=20x
Multiply both sides of the equation by 10, the least common multiple of 10,2.
10x^{2}-7x^{2}-3-5\left(x^{2}-3x\right)=20x
To find the opposite of 7x^{2}+3, find the opposite of each term.
3x^{2}-3-5\left(x^{2}-3x\right)=20x
Combine 10x^{2} and -7x^{2} to get 3x^{2}.
3x^{2}-3-5x^{2}+15x=20x
Use the distributive property to multiply -5 by x^{2}-3x.
-2x^{2}-3+15x=20x
Combine 3x^{2} and -5x^{2} to get -2x^{2}.
-2x^{2}-3+15x-20x=0
Subtract 20x from both sides.
-2x^{2}-3-5x=0
Combine 15x and -20x to get -5x.
-2x^{2}-5x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -5 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+8\left(-3\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2\left(-2\right)}
Multiply 8 times -3.
x=\frac{-\left(-5\right)±\sqrt{1}}{2\left(-2\right)}
Add 25 to -24.
x=\frac{-\left(-5\right)±1}{2\left(-2\right)}
Take the square root of 1.
x=\frac{5±1}{2\left(-2\right)}
The opposite of -5 is 5.
x=\frac{5±1}{-4}
Multiply 2 times -2.
x=\frac{6}{-4}
Now solve the equation x=\frac{5±1}{-4} when ± is plus. Add 5 to 1.
x=-\frac{3}{2}
Reduce the fraction \frac{6}{-4} to lowest terms by extracting and canceling out 2.
x=\frac{4}{-4}
Now solve the equation x=\frac{5±1}{-4} when ± is minus. Subtract 1 from 5.
x=-1
Divide 4 by -4.
x=-\frac{3}{2} x=-1
The equation is now solved.
10x^{2}-\left(7x^{2}+3\right)-5\left(x^{2}-3x\right)=20x
Multiply both sides of the equation by 10, the least common multiple of 10,2.
10x^{2}-7x^{2}-3-5\left(x^{2}-3x\right)=20x
To find the opposite of 7x^{2}+3, find the opposite of each term.
3x^{2}-3-5\left(x^{2}-3x\right)=20x
Combine 10x^{2} and -7x^{2} to get 3x^{2}.
3x^{2}-3-5x^{2}+15x=20x
Use the distributive property to multiply -5 by x^{2}-3x.
-2x^{2}-3+15x=20x
Combine 3x^{2} and -5x^{2} to get -2x^{2}.
-2x^{2}-3+15x-20x=0
Subtract 20x from both sides.
-2x^{2}-3-5x=0
Combine 15x and -20x to get -5x.
-2x^{2}-5x=3
Add 3 to both sides. Anything plus zero gives itself.
\frac{-2x^{2}-5x}{-2}=\frac{3}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{5}{-2}\right)x=\frac{3}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{5}{2}x=\frac{3}{-2}
Divide -5 by -2.
x^{2}+\frac{5}{2}x=-\frac{3}{2}
Divide 3 by -2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{3}{2}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{1}{16}
Add -\frac{3}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{1}{4} x+\frac{5}{4}=-\frac{1}{4}
Simplify.
x=-1 x=-\frac{3}{2}
Subtract \frac{5}{4} from both sides of the equation.