Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

64x^{2}-1=0
Multiply both sides by 64.
\left(8x-1\right)\left(8x+1\right)=0
Consider 64x^{2}-1. Rewrite 64x^{2}-1 as \left(8x\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{8} x=-\frac{1}{8}
To find equation solutions, solve 8x-1=0 and 8x+1=0.
x^{2}=\frac{1}{64}
Add \frac{1}{64} to both sides. Anything plus zero gives itself.
x=\frac{1}{8} x=-\frac{1}{8}
Take the square root of both sides of the equation.
x^{2}-\frac{1}{64}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{64}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1}{64} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1}{64}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{1}{16}}}{2}
Multiply -4 times -\frac{1}{64}.
x=\frac{0±\frac{1}{4}}{2}
Take the square root of \frac{1}{16}.
x=\frac{1}{8}
Now solve the equation x=\frac{0±\frac{1}{4}}{2} when ± is plus.
x=-\frac{1}{8}
Now solve the equation x=\frac{0±\frac{1}{4}}{2} when ± is minus.
x=\frac{1}{8} x=-\frac{1}{8}
The equation is now solved.