Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-\left(2x-1\right)^{2}=2
Multiply both sides of the equation by 2.
2x^{2}-\left(4x^{2}-4x+1\right)=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
2x^{2}-4x^{2}+4x-1=2
To find the opposite of 4x^{2}-4x+1, find the opposite of each term.
-2x^{2}+4x-1=2
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}+4x-1-2=0
Subtract 2 from both sides.
-2x^{2}+4x-3=0
Subtract 2 from -1 to get -3.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Square 4.
x=\frac{-4±\sqrt{16+8\left(-3\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-4±\sqrt{16-24}}{2\left(-2\right)}
Multiply 8 times -3.
x=\frac{-4±\sqrt{-8}}{2\left(-2\right)}
Add 16 to -24.
x=\frac{-4±2\sqrt{2}i}{2\left(-2\right)}
Take the square root of -8.
x=\frac{-4±2\sqrt{2}i}{-4}
Multiply 2 times -2.
x=\frac{-4+2\sqrt{2}i}{-4}
Now solve the equation x=\frac{-4±2\sqrt{2}i}{-4} when ± is plus. Add -4 to 2i\sqrt{2}.
x=-\frac{\sqrt{2}i}{2}+1
Divide -4+2i\sqrt{2} by -4.
x=\frac{-2\sqrt{2}i-4}{-4}
Now solve the equation x=\frac{-4±2\sqrt{2}i}{-4} when ± is minus. Subtract 2i\sqrt{2} from -4.
x=\frac{\sqrt{2}i}{2}+1
Divide -4-2i\sqrt{2} by -4.
x=-\frac{\sqrt{2}i}{2}+1 x=\frac{\sqrt{2}i}{2}+1
The equation is now solved.
2x^{2}-\left(2x-1\right)^{2}=2
Multiply both sides of the equation by 2.
2x^{2}-\left(4x^{2}-4x+1\right)=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
2x^{2}-4x^{2}+4x-1=2
To find the opposite of 4x^{2}-4x+1, find the opposite of each term.
-2x^{2}+4x-1=2
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}+4x=2+1
Add 1 to both sides.
-2x^{2}+4x=3
Add 2 and 1 to get 3.
\frac{-2x^{2}+4x}{-2}=\frac{3}{-2}
Divide both sides by -2.
x^{2}+\frac{4}{-2}x=\frac{3}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-2x=\frac{3}{-2}
Divide 4 by -2.
x^{2}-2x=-\frac{3}{2}
Divide 3 by -2.
x^{2}-2x+1=-\frac{3}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-\frac{1}{2}
Add -\frac{3}{2} to 1.
\left(x-1\right)^{2}=-\frac{1}{2}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{1}{2}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{2}i}{2} x-1=-\frac{\sqrt{2}i}{2}
Simplify.
x=\frac{\sqrt{2}i}{2}+1 x=-\frac{\sqrt{2}i}{2}+1
Add 1 to both sides of the equation.