Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{4}+7x^{2}=4
Use the distributive property to multiply x^{2} by 3x^{2}+7.
3x^{4}+7x^{2}-4=0
Subtract 4 from both sides.
3t^{2}+7t-4=0
Substitute t for x^{2}.
t=\frac{-7±\sqrt{7^{2}-4\times 3\left(-4\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, 7 for b, and -4 for c in the quadratic formula.
t=\frac{-7±\sqrt{97}}{6}
Do the calculations.
t=\frac{\sqrt{97}-7}{6} t=\frac{-\sqrt{97}-7}{6}
Solve the equation t=\frac{-7±\sqrt{97}}{6} when ± is plus and when ± is minus.
x=-\sqrt{\frac{\sqrt{97}-7}{6}} x=\sqrt{\frac{\sqrt{97}-7}{6}} x=-i\sqrt{\frac{\sqrt{97}+7}{6}} x=i\sqrt{\frac{\sqrt{97}+7}{6}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
3x^{4}+7x^{2}=4
Use the distributive property to multiply x^{2} by 3x^{2}+7.
3x^{4}+7x^{2}-4=0
Subtract 4 from both sides.
3t^{2}+7t-4=0
Substitute t for x^{2}.
t=\frac{-7±\sqrt{7^{2}-4\times 3\left(-4\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, 7 for b, and -4 for c in the quadratic formula.
t=\frac{-7±\sqrt{97}}{6}
Do the calculations.
t=\frac{\sqrt{97}-7}{6} t=\frac{-\sqrt{97}-7}{6}
Solve the equation t=\frac{-7±\sqrt{97}}{6} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{2\sqrt{97}-14}{3}}}{2} x=-\frac{\sqrt{\frac{2\sqrt{97}-14}{3}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.