Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

13x^{2}-x^{4}=89
Use the distributive property to multiply x^{2} by 13-x^{2}.
13x^{2}-x^{4}-89=0
Subtract 89 from both sides.
-t^{2}+13t-89=0
Substitute t for x^{2}.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\left(-89\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 13 for b, and -89 for c in the quadratic formula.
t=\frac{-13±\sqrt{-187}}{-2}
Do the calculations.
t=\frac{-\sqrt{187}i+13}{2} t=\frac{13+\sqrt{187}i}{2}
Solve the equation t=\frac{-13±\sqrt{-187}}{-2} when ± is plus and when ± is minus.
x=\sqrt[4]{89}e^{-\frac{\arctan(\frac{\sqrt{187}}{13})i}{2}} x=\sqrt[4]{89}e^{\frac{-\arctan(\frac{\sqrt{187}}{13})i+2\pi i}{2}} x=\sqrt[4]{89}e^{\frac{\arctan(\frac{\sqrt{187}}{13})i+2\pi i}{2}} x=\sqrt[4]{89}e^{\frac{\arctan(\frac{\sqrt{187}}{13})i}{2}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.