Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\pi x^{2}}{\pi }=\frac{15}{\pi }
Divide both sides by \pi .
x^{2}=\frac{15}{\pi }
Dividing by \pi undoes the multiplication by \pi .
x=\frac{15}{\sqrt{15\pi }} x=-\frac{15}{\sqrt{15\pi }}
Take the square root of both sides of the equation.
x^{2}\pi -15=0
Subtract 15 from both sides.
\pi x^{2}-15=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\pi \left(-15\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\pi \left(-15\right)}}{2\pi }
Square 0.
x=\frac{0±\sqrt{\left(-4\pi \right)\left(-15\right)}}{2\pi }
Multiply -4 times \pi .
x=\frac{0±\sqrt{60\pi }}{2\pi }
Multiply -4\pi times -15.
x=\frac{0±2\sqrt{15\pi }}{2\pi }
Take the square root of 60\pi .
x=\frac{15}{\sqrt{15\pi }}
Now solve the equation x=\frac{0±2\sqrt{15\pi }}{2\pi } when ± is plus.
x=-\frac{15}{\sqrt{15\pi }}
Now solve the equation x=\frac{0±2\sqrt{15\pi }}{2\pi } when ± is minus.
x=\frac{15}{\sqrt{15\pi }} x=-\frac{15}{\sqrt{15\pi }}
The equation is now solved.