Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-8x=-40
Subtract 8x from both sides.
x^{2}-8x+40=0
Add 40 to both sides.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 40}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 40}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-160}}{2}
Multiply -4 times 40.
x=\frac{-\left(-8\right)±\sqrt{-96}}{2}
Add 64 to -160.
x=\frac{-\left(-8\right)±4\sqrt{6}i}{2}
Take the square root of -96.
x=\frac{8±4\sqrt{6}i}{2}
The opposite of -8 is 8.
x=\frac{8+4\sqrt{6}i}{2}
Now solve the equation x=\frac{8±4\sqrt{6}i}{2} when ± is plus. Add 8 to 4i\sqrt{6}.
x=4+2\sqrt{6}i
Divide 8+4i\sqrt{6} by 2.
x=\frac{-4\sqrt{6}i+8}{2}
Now solve the equation x=\frac{8±4\sqrt{6}i}{2} when ± is minus. Subtract 4i\sqrt{6} from 8.
x=-2\sqrt{6}i+4
Divide 8-4i\sqrt{6} by 2.
x=4+2\sqrt{6}i x=-2\sqrt{6}i+4
The equation is now solved.
x^{2}-8x=-40
Subtract 8x from both sides.
x^{2}-8x+\left(-4\right)^{2}=-40+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-40+16
Square -4.
x^{2}-8x+16=-24
Add -40 to 16.
\left(x-4\right)^{2}=-24
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-24}
Take the square root of both sides of the equation.
x-4=2\sqrt{6}i x-4=-2\sqrt{6}i
Simplify.
x=4+2\sqrt{6}i x=-2\sqrt{6}i+4
Add 4 to both sides of the equation.