Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-64x=0
Subtract 64x from both sides.
x\left(x-64\right)=0
Factor out x.
x=0 x=64
To find equation solutions, solve x=0 and x-64=0.
x^{2}-64x=0
Subtract 64x from both sides.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -64 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±64}{2}
Take the square root of \left(-64\right)^{2}.
x=\frac{64±64}{2}
The opposite of -64 is 64.
x=\frac{128}{2}
Now solve the equation x=\frac{64±64}{2} when ± is plus. Add 64 to 64.
x=64
Divide 128 by 2.
x=\frac{0}{2}
Now solve the equation x=\frac{64±64}{2} when ± is minus. Subtract 64 from 64.
x=0
Divide 0 by 2.
x=64 x=0
The equation is now solved.
x^{2}-64x=0
Subtract 64x from both sides.
x^{2}-64x+\left(-32\right)^{2}=\left(-32\right)^{2}
Divide -64, the coefficient of the x term, by 2 to get -32. Then add the square of -32 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-64x+1024=1024
Square -32.
\left(x-32\right)^{2}=1024
Factor x^{2}-64x+1024. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-32\right)^{2}}=\sqrt{1024}
Take the square root of both sides of the equation.
x-32=32 x-32=-32
Simplify.
x=64 x=0
Add 32 to both sides of the equation.