Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=4\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}=4x^{2}-24x+36
Use the distributive property to multiply 4 by x^{2}-6x+9.
x^{2}-4x^{2}=-24x+36
Subtract 4x^{2} from both sides.
-3x^{2}=-24x+36
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+24x=36
Add 24x to both sides.
-3x^{2}+24x-36=0
Subtract 36 from both sides.
-x^{2}+8x-12=0
Divide both sides by 3.
a+b=8 ab=-\left(-12\right)=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=6 b=2
The solution is the pair that gives sum 8.
\left(-x^{2}+6x\right)+\left(2x-12\right)
Rewrite -x^{2}+8x-12 as \left(-x^{2}+6x\right)+\left(2x-12\right).
-x\left(x-6\right)+2\left(x-6\right)
Factor out -x in the first and 2 in the second group.
\left(x-6\right)\left(-x+2\right)
Factor out common term x-6 by using distributive property.
x=6 x=2
To find equation solutions, solve x-6=0 and -x+2=0.
x^{2}=4\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}=4x^{2}-24x+36
Use the distributive property to multiply 4 by x^{2}-6x+9.
x^{2}-4x^{2}=-24x+36
Subtract 4x^{2} from both sides.
-3x^{2}=-24x+36
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+24x=36
Add 24x to both sides.
-3x^{2}+24x-36=0
Subtract 36 from both sides.
x=\frac{-24±\sqrt{24^{2}-4\left(-3\right)\left(-36\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 24 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\left(-3\right)\left(-36\right)}}{2\left(-3\right)}
Square 24.
x=\frac{-24±\sqrt{576+12\left(-36\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-24±\sqrt{576-432}}{2\left(-3\right)}
Multiply 12 times -36.
x=\frac{-24±\sqrt{144}}{2\left(-3\right)}
Add 576 to -432.
x=\frac{-24±12}{2\left(-3\right)}
Take the square root of 144.
x=\frac{-24±12}{-6}
Multiply 2 times -3.
x=-\frac{12}{-6}
Now solve the equation x=\frac{-24±12}{-6} when ± is plus. Add -24 to 12.
x=2
Divide -12 by -6.
x=-\frac{36}{-6}
Now solve the equation x=\frac{-24±12}{-6} when ± is minus. Subtract 12 from -24.
x=6
Divide -36 by -6.
x=2 x=6
The equation is now solved.
x^{2}=4\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}=4x^{2}-24x+36
Use the distributive property to multiply 4 by x^{2}-6x+9.
x^{2}-4x^{2}=-24x+36
Subtract 4x^{2} from both sides.
-3x^{2}=-24x+36
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+24x=36
Add 24x to both sides.
\frac{-3x^{2}+24x}{-3}=\frac{36}{-3}
Divide both sides by -3.
x^{2}+\frac{24}{-3}x=\frac{36}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-8x=\frac{36}{-3}
Divide 24 by -3.
x^{2}-8x=-12
Divide 36 by -3.
x^{2}-8x+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-12+16
Square -4.
x^{2}-8x+16=4
Add -12 to 16.
\left(x-4\right)^{2}=4
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-4=2 x-4=-2
Simplify.
x=6 x=2
Add 4 to both sides of the equation.