Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=16+\left(\frac{2x}{5}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x^{2}=16+\frac{\left(2x\right)^{2}}{5^{2}}
To raise \frac{2x}{5} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{16\times 5^{2}}{5^{2}}+\frac{\left(2x\right)^{2}}{5^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{5^{2}}{5^{2}}.
x^{2}=\frac{16\times 5^{2}+\left(2x\right)^{2}}{5^{2}}
Since \frac{16\times 5^{2}}{5^{2}} and \frac{\left(2x\right)^{2}}{5^{2}} have the same denominator, add them by adding their numerators.
x^{2}=\frac{400+\left(2x\right)^{2}}{5^{2}}
Do the multiplications in 16\times 5^{2}+\left(2x\right)^{2}.
x^{2}=\frac{400+4x^{2}}{5^{2}}
Combine like terms in 400+\left(2x\right)^{2}.
x^{2}=\frac{400+4x^{2}}{25}
Calculate 5 to the power of 2 and get 25.
x^{2}=16+\frac{4}{25}x^{2}
Divide each term of 400+4x^{2} by 25 to get 16+\frac{4}{25}x^{2}.
x^{2}-\frac{4}{25}x^{2}=16
Subtract \frac{4}{25}x^{2} from both sides.
\frac{21}{25}x^{2}=16
Combine x^{2} and -\frac{4}{25}x^{2} to get \frac{21}{25}x^{2}.
x^{2}=16\times \frac{25}{21}
Multiply both sides by \frac{25}{21}, the reciprocal of \frac{21}{25}.
x^{2}=\frac{400}{21}
Multiply 16 and \frac{25}{21} to get \frac{400}{21}.
x=\frac{20\sqrt{21}}{21} x=-\frac{20\sqrt{21}}{21}
Take the square root of both sides of the equation.
x^{2}=16+\left(\frac{2x}{5}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x^{2}=16+\frac{\left(2x\right)^{2}}{5^{2}}
To raise \frac{2x}{5} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{16\times 5^{2}}{5^{2}}+\frac{\left(2x\right)^{2}}{5^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{5^{2}}{5^{2}}.
x^{2}=\frac{16\times 5^{2}+\left(2x\right)^{2}}{5^{2}}
Since \frac{16\times 5^{2}}{5^{2}} and \frac{\left(2x\right)^{2}}{5^{2}} have the same denominator, add them by adding their numerators.
x^{2}=\frac{400+\left(2x\right)^{2}}{5^{2}}
Do the multiplications in 16\times 5^{2}+\left(2x\right)^{2}.
x^{2}=\frac{400+4x^{2}}{5^{2}}
Combine like terms in 400+\left(2x\right)^{2}.
x^{2}=\frac{400+4x^{2}}{25}
Calculate 5 to the power of 2 and get 25.
x^{2}=16+\frac{4}{25}x^{2}
Divide each term of 400+4x^{2} by 25 to get 16+\frac{4}{25}x^{2}.
x^{2}-16=\frac{4}{25}x^{2}
Subtract 16 from both sides.
x^{2}-16-\frac{4}{25}x^{2}=0
Subtract \frac{4}{25}x^{2} from both sides.
\frac{21}{25}x^{2}-16=0
Combine x^{2} and -\frac{4}{25}x^{2} to get \frac{21}{25}x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times \frac{21}{25}\left(-16\right)}}{2\times \frac{21}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{21}{25} for a, 0 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{21}{25}\left(-16\right)}}{2\times \frac{21}{25}}
Square 0.
x=\frac{0±\sqrt{-\frac{84}{25}\left(-16\right)}}{2\times \frac{21}{25}}
Multiply -4 times \frac{21}{25}.
x=\frac{0±\sqrt{\frac{1344}{25}}}{2\times \frac{21}{25}}
Multiply -\frac{84}{25} times -16.
x=\frac{0±\frac{8\sqrt{21}}{5}}{2\times \frac{21}{25}}
Take the square root of \frac{1344}{25}.
x=\frac{0±\frac{8\sqrt{21}}{5}}{\frac{42}{25}}
Multiply 2 times \frac{21}{25}.
x=\frac{20\sqrt{21}}{21}
Now solve the equation x=\frac{0±\frac{8\sqrt{21}}{5}}{\frac{42}{25}} when ± is plus.
x=-\frac{20\sqrt{21}}{21}
Now solve the equation x=\frac{0±\frac{8\sqrt{21}}{5}}{\frac{42}{25}} when ± is minus.
x=\frac{20\sqrt{21}}{21} x=-\frac{20\sqrt{21}}{21}
The equation is now solved.