Solve for x
x=\frac{100\sqrt{6}}{3}+200\approx 281.649658093
x=-\frac{100\sqrt{6}}{3}+200\approx 118.350341907
Graph
Share
Copied to clipboard
x^{2}=10000+\left(300-2x\right)^{2}
Calculate 100 to the power of 2 and get 10000.
x^{2}=10000+90000-1200x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(300-2x\right)^{2}.
x^{2}=100000-1200x+4x^{2}
Add 10000 and 90000 to get 100000.
x^{2}-100000=-1200x+4x^{2}
Subtract 100000 from both sides.
x^{2}-100000+1200x=4x^{2}
Add 1200x to both sides.
x^{2}-100000+1200x-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}-100000+1200x=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+1200x-100000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1200±\sqrt{1200^{2}-4\left(-3\right)\left(-100000\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 1200 for b, and -100000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1200±\sqrt{1440000-4\left(-3\right)\left(-100000\right)}}{2\left(-3\right)}
Square 1200.
x=\frac{-1200±\sqrt{1440000+12\left(-100000\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-1200±\sqrt{1440000-1200000}}{2\left(-3\right)}
Multiply 12 times -100000.
x=\frac{-1200±\sqrt{240000}}{2\left(-3\right)}
Add 1440000 to -1200000.
x=\frac{-1200±200\sqrt{6}}{2\left(-3\right)}
Take the square root of 240000.
x=\frac{-1200±200\sqrt{6}}{-6}
Multiply 2 times -3.
x=\frac{200\sqrt{6}-1200}{-6}
Now solve the equation x=\frac{-1200±200\sqrt{6}}{-6} when ± is plus. Add -1200 to 200\sqrt{6}.
x=-\frac{100\sqrt{6}}{3}+200
Divide -1200+200\sqrt{6} by -6.
x=\frac{-200\sqrt{6}-1200}{-6}
Now solve the equation x=\frac{-1200±200\sqrt{6}}{-6} when ± is minus. Subtract 200\sqrt{6} from -1200.
x=\frac{100\sqrt{6}}{3}+200
Divide -1200-200\sqrt{6} by -6.
x=-\frac{100\sqrt{6}}{3}+200 x=\frac{100\sqrt{6}}{3}+200
The equation is now solved.
x^{2}=10000+\left(300-2x\right)^{2}
Calculate 100 to the power of 2 and get 10000.
x^{2}=10000+90000-1200x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(300-2x\right)^{2}.
x^{2}=100000-1200x+4x^{2}
Add 10000 and 90000 to get 100000.
x^{2}+1200x=100000+4x^{2}
Add 1200x to both sides.
x^{2}+1200x-4x^{2}=100000
Subtract 4x^{2} from both sides.
-3x^{2}+1200x=100000
Combine x^{2} and -4x^{2} to get -3x^{2}.
\frac{-3x^{2}+1200x}{-3}=\frac{100000}{-3}
Divide both sides by -3.
x^{2}+\frac{1200}{-3}x=\frac{100000}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-400x=\frac{100000}{-3}
Divide 1200 by -3.
x^{2}-400x=-\frac{100000}{3}
Divide 100000 by -3.
x^{2}-400x+\left(-200\right)^{2}=-\frac{100000}{3}+\left(-200\right)^{2}
Divide -400, the coefficient of the x term, by 2 to get -200. Then add the square of -200 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-400x+40000=-\frac{100000}{3}+40000
Square -200.
x^{2}-400x+40000=\frac{20000}{3}
Add -\frac{100000}{3} to 40000.
\left(x-200\right)^{2}=\frac{20000}{3}
Factor x^{2}-400x+40000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-200\right)^{2}}=\sqrt{\frac{20000}{3}}
Take the square root of both sides of the equation.
x-200=\frac{100\sqrt{6}}{3} x-200=-\frac{100\sqrt{6}}{3}
Simplify.
x=\frac{100\sqrt{6}}{3}+200 x=-\frac{100\sqrt{6}}{3}+200
Add 200 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}