Solve for x
x = \frac{\sqrt{17} + 3}{4} \approx 1.780776406
x=\frac{3-\sqrt{17}}{4}\approx -0.280776406
Graph
Share
Copied to clipboard
x^{2}-0.5=1.5x
Subtract 0.5 from both sides.
x^{2}-0.5-1.5x=0
Subtract 1.5x from both sides.
x^{2}-1.5x-0.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1.5\right)±\sqrt{\left(-1.5\right)^{2}-4\left(-0.5\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1.5 for b, and -0.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1.5\right)±\sqrt{2.25-4\left(-0.5\right)}}{2}
Square -1.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-1.5\right)±\sqrt{2.25+2}}{2}
Multiply -4 times -0.5.
x=\frac{-\left(-1.5\right)±\sqrt{4.25}}{2}
Add 2.25 to 2.
x=\frac{-\left(-1.5\right)±\frac{\sqrt{17}}{2}}{2}
Take the square root of 4.25.
x=\frac{1.5±\frac{\sqrt{17}}{2}}{2}
The opposite of -1.5 is 1.5.
x=\frac{\sqrt{17}+3}{2\times 2}
Now solve the equation x=\frac{1.5±\frac{\sqrt{17}}{2}}{2} when ± is plus. Add 1.5 to \frac{\sqrt{17}}{2}.
x=\frac{\sqrt{17}+3}{4}
Divide \frac{3+\sqrt{17}}{2} by 2.
x=\frac{3-\sqrt{17}}{2\times 2}
Now solve the equation x=\frac{1.5±\frac{\sqrt{17}}{2}}{2} when ± is minus. Subtract \frac{\sqrt{17}}{2} from 1.5.
x=\frac{3-\sqrt{17}}{4}
Divide \frac{3-\sqrt{17}}{2} by 2.
x=\frac{\sqrt{17}+3}{4} x=\frac{3-\sqrt{17}}{4}
The equation is now solved.
x^{2}-1.5x=0.5
Subtract 1.5x from both sides.
x^{2}-1.5x=\frac{1}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-1.5x+\left(-0.75\right)^{2}=\frac{1}{2}+\left(-0.75\right)^{2}
Divide -1.5, the coefficient of the x term, by 2 to get -0.75. Then add the square of -0.75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1.5x+0.5625=\frac{1}{2}+0.5625
Square -0.75 by squaring both the numerator and the denominator of the fraction.
x^{2}-1.5x+0.5625=\frac{17}{16}
Add \frac{1}{2} to 0.5625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.75\right)^{2}=\frac{17}{16}
Factor x^{2}-1.5x+0.5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.75\right)^{2}}=\sqrt{\frac{17}{16}}
Take the square root of both sides of the equation.
x-0.75=\frac{\sqrt{17}}{4} x-0.75=-\frac{\sqrt{17}}{4}
Simplify.
x=\frac{\sqrt{17}+3}{4} x=\frac{3-\sqrt{17}}{4}
Add 0.75 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}