Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+8x=-15
Add 8x to both sides.
x^{2}+8x+15=0
Add 15 to both sides.
a+b=8 ab=15
To solve the equation, factor x^{2}+8x+15 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,15 3,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 15.
1+15=16 3+5=8
Calculate the sum for each pair.
a=3 b=5
The solution is the pair that gives sum 8.
\left(x+3\right)\left(x+5\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=-3 x=-5
To find equation solutions, solve x+3=0 and x+5=0.
x^{2}+8x=-15
Add 8x to both sides.
x^{2}+8x+15=0
Add 15 to both sides.
a+b=8 ab=1\times 15=15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
1,15 3,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 15.
1+15=16 3+5=8
Calculate the sum for each pair.
a=3 b=5
The solution is the pair that gives sum 8.
\left(x^{2}+3x\right)+\left(5x+15\right)
Rewrite x^{2}+8x+15 as \left(x^{2}+3x\right)+\left(5x+15\right).
x\left(x+3\right)+5\left(x+3\right)
Factor out x in the first and 5 in the second group.
\left(x+3\right)\left(x+5\right)
Factor out common term x+3 by using distributive property.
x=-3 x=-5
To find equation solutions, solve x+3=0 and x+5=0.
x^{2}+8x=-15
Add 8x to both sides.
x^{2}+8x+15=0
Add 15 to both sides.
x=\frac{-8±\sqrt{8^{2}-4\times 15}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 15}}{2}
Square 8.
x=\frac{-8±\sqrt{64-60}}{2}
Multiply -4 times 15.
x=\frac{-8±\sqrt{4}}{2}
Add 64 to -60.
x=\frac{-8±2}{2}
Take the square root of 4.
x=-\frac{6}{2}
Now solve the equation x=\frac{-8±2}{2} when ± is plus. Add -8 to 2.
x=-3
Divide -6 by 2.
x=-\frac{10}{2}
Now solve the equation x=\frac{-8±2}{2} when ± is minus. Subtract 2 from -8.
x=-5
Divide -10 by 2.
x=-3 x=-5
The equation is now solved.
x^{2}+8x=-15
Add 8x to both sides.
x^{2}+8x+4^{2}=-15+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-15+16
Square 4.
x^{2}+8x+16=1
Add -15 to 16.
\left(x+4\right)^{2}=1
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+4=1 x+4=-1
Simplify.
x=-3 x=-5
Subtract 4 from both sides of the equation.