Solve for x
x=2
x=26
Graph
Share
Copied to clipboard
x^{2}=x^{2}-4x+4+\left(\frac{x-6}{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}=x^{2}-4x+4+\frac{\left(x-6\right)^{2}}{2^{2}}
To raise \frac{x-6}{2} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{\left(x^{2}-4x+4\right)\times 2^{2}}{2^{2}}+\frac{\left(x-6\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-4x+4 times \frac{2^{2}}{2^{2}}.
x^{2}=\frac{\left(x^{2}-4x+4\right)\times 2^{2}+\left(x-6\right)^{2}}{2^{2}}
Since \frac{\left(x^{2}-4x+4\right)\times 2^{2}}{2^{2}} and \frac{\left(x-6\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
x^{2}=\frac{4x^{2}-16x+16+x^{2}-12x+36}{2^{2}}
Do the multiplications in \left(x^{2}-4x+4\right)\times 2^{2}+\left(x-6\right)^{2}.
x^{2}=\frac{5x^{2}-28x+52}{2^{2}}
Combine like terms in 4x^{2}-16x+16+x^{2}-12x+36.
x^{2}=\frac{5x^{2}-28x+52}{4}
Calculate 2 to the power of 2 and get 4.
x^{2}=\frac{5}{4}x^{2}-7x+13
Divide each term of 5x^{2}-28x+52 by 4 to get \frac{5}{4}x^{2}-7x+13.
x^{2}-\frac{5}{4}x^{2}=-7x+13
Subtract \frac{5}{4}x^{2} from both sides.
-\frac{1}{4}x^{2}=-7x+13
Combine x^{2} and -\frac{5}{4}x^{2} to get -\frac{1}{4}x^{2}.
-\frac{1}{4}x^{2}+7x=13
Add 7x to both sides.
-\frac{1}{4}x^{2}+7x-13=0
Subtract 13 from both sides.
x=\frac{-7±\sqrt{7^{2}-4\left(-\frac{1}{4}\right)\left(-13\right)}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, 7 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-\frac{1}{4}\right)\left(-13\right)}}{2\left(-\frac{1}{4}\right)}
Square 7.
x=\frac{-7±\sqrt{49-13}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
x=\frac{-7±\sqrt{36}}{2\left(-\frac{1}{4}\right)}
Add 49 to -13.
x=\frac{-7±6}{2\left(-\frac{1}{4}\right)}
Take the square root of 36.
x=\frac{-7±6}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
x=-\frac{1}{-\frac{1}{2}}
Now solve the equation x=\frac{-7±6}{-\frac{1}{2}} when ± is plus. Add -7 to 6.
x=2
Divide -1 by -\frac{1}{2} by multiplying -1 by the reciprocal of -\frac{1}{2}.
x=-\frac{13}{-\frac{1}{2}}
Now solve the equation x=\frac{-7±6}{-\frac{1}{2}} when ± is minus. Subtract 6 from -7.
x=26
Divide -13 by -\frac{1}{2} by multiplying -13 by the reciprocal of -\frac{1}{2}.
x=2 x=26
The equation is now solved.
x^{2}=x^{2}-4x+4+\left(\frac{x-6}{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}=x^{2}-4x+4+\frac{\left(x-6\right)^{2}}{2^{2}}
To raise \frac{x-6}{2} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{\left(x^{2}-4x+4\right)\times 2^{2}}{2^{2}}+\frac{\left(x-6\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-4x+4 times \frac{2^{2}}{2^{2}}.
x^{2}=\frac{\left(x^{2}-4x+4\right)\times 2^{2}+\left(x-6\right)^{2}}{2^{2}}
Since \frac{\left(x^{2}-4x+4\right)\times 2^{2}}{2^{2}} and \frac{\left(x-6\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
x^{2}=\frac{4x^{2}-16x+16+x^{2}-12x+36}{2^{2}}
Do the multiplications in \left(x^{2}-4x+4\right)\times 2^{2}+\left(x-6\right)^{2}.
x^{2}=\frac{5x^{2}-28x+52}{2^{2}}
Combine like terms in 4x^{2}-16x+16+x^{2}-12x+36.
x^{2}=\frac{5x^{2}-28x+52}{4}
Calculate 2 to the power of 2 and get 4.
x^{2}=\frac{5}{4}x^{2}-7x+13
Divide each term of 5x^{2}-28x+52 by 4 to get \frac{5}{4}x^{2}-7x+13.
x^{2}-\frac{5}{4}x^{2}=-7x+13
Subtract \frac{5}{4}x^{2} from both sides.
-\frac{1}{4}x^{2}=-7x+13
Combine x^{2} and -\frac{5}{4}x^{2} to get -\frac{1}{4}x^{2}.
-\frac{1}{4}x^{2}+7x=13
Add 7x to both sides.
\frac{-\frac{1}{4}x^{2}+7x}{-\frac{1}{4}}=\frac{13}{-\frac{1}{4}}
Multiply both sides by -4.
x^{2}+\frac{7}{-\frac{1}{4}}x=\frac{13}{-\frac{1}{4}}
Dividing by -\frac{1}{4} undoes the multiplication by -\frac{1}{4}.
x^{2}-28x=\frac{13}{-\frac{1}{4}}
Divide 7 by -\frac{1}{4} by multiplying 7 by the reciprocal of -\frac{1}{4}.
x^{2}-28x=-52
Divide 13 by -\frac{1}{4} by multiplying 13 by the reciprocal of -\frac{1}{4}.
x^{2}-28x+\left(-14\right)^{2}=-52+\left(-14\right)^{2}
Divide -28, the coefficient of the x term, by 2 to get -14. Then add the square of -14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-28x+196=-52+196
Square -14.
x^{2}-28x+196=144
Add -52 to 196.
\left(x-14\right)^{2}=144
Factor x^{2}-28x+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-14\right)^{2}}=\sqrt{144}
Take the square root of both sides of the equation.
x-14=12 x-14=-12
Simplify.
x=26 x=2
Add 14 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}