Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{11}{2}\right)^{2}
To raise \frac{3\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}+\frac{121}{4}
Calculate \frac{11}{2} to the power of 2 and get \frac{121}{4}.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{4}+\frac{121}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}+121}{4}
Since \frac{\left(3\sqrt{3}\right)^{2}}{4} and \frac{121}{4} have the same denominator, add them by adding their numerators.
x^{2}=\frac{3^{2}\left(\sqrt{3}\right)^{2}+121}{4}
Expand \left(3\sqrt{3}\right)^{2}.
x^{2}=\frac{9\left(\sqrt{3}\right)^{2}+121}{4}
Calculate 3 to the power of 2 and get 9.
x^{2}=\frac{9\times 3+121}{4}
The square of \sqrt{3} is 3.
x^{2}=\frac{27+121}{4}
Multiply 9 and 3 to get 27.
x^{2}=\frac{148}{4}
Add 27 and 121 to get 148.
x^{2}=37
Divide 148 by 4 to get 37.
x=\sqrt{37} x=-\sqrt{37}
Take the square root of both sides of the equation.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{11}{2}\right)^{2}
To raise \frac{3\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}+\frac{121}{4}
Calculate \frac{11}{2} to the power of 2 and get \frac{121}{4}.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{4}+\frac{121}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}+121}{4}
Since \frac{\left(3\sqrt{3}\right)^{2}}{4} and \frac{121}{4} have the same denominator, add them by adding their numerators.
x^{2}=\frac{3^{2}\left(\sqrt{3}\right)^{2}+121}{4}
Expand \left(3\sqrt{3}\right)^{2}.
x^{2}=\frac{9\left(\sqrt{3}\right)^{2}+121}{4}
Calculate 3 to the power of 2 and get 9.
x^{2}=\frac{9\times 3+121}{4}
The square of \sqrt{3} is 3.
x^{2}=\frac{27+121}{4}
Multiply 9 and 3 to get 27.
x^{2}=\frac{148}{4}
Add 27 and 121 to get 148.
x^{2}=37
Divide 148 by 4 to get 37.
x^{2}-37=0
Subtract 37 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-37\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -37 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-37\right)}}{2}
Square 0.
x=\frac{0±\sqrt{148}}{2}
Multiply -4 times -37.
x=\frac{0±2\sqrt{37}}{2}
Take the square root of 148.
x=\sqrt{37}
Now solve the equation x=\frac{0±2\sqrt{37}}{2} when ± is plus.
x=-\sqrt{37}
Now solve the equation x=\frac{0±2\sqrt{37}}{2} when ± is minus.
x=\sqrt{37} x=-\sqrt{37}
The equation is now solved.