Solve for x
x=\sqrt{37}\approx 6.08276253
x=-\sqrt{37}\approx -6.08276253
Graph
Share
Copied to clipboard
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{11}{2}\right)^{2}
To raise \frac{3\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}+\frac{121}{4}
Calculate \frac{11}{2} to the power of 2 and get \frac{121}{4}.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{4}+\frac{121}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}+121}{4}
Since \frac{\left(3\sqrt{3}\right)^{2}}{4} and \frac{121}{4} have the same denominator, add them by adding their numerators.
x^{2}=\frac{3^{2}\left(\sqrt{3}\right)^{2}+121}{4}
Expand \left(3\sqrt{3}\right)^{2}.
x^{2}=\frac{9\left(\sqrt{3}\right)^{2}+121}{4}
Calculate 3 to the power of 2 and get 9.
x^{2}=\frac{9\times 3+121}{4}
The square of \sqrt{3} is 3.
x^{2}=\frac{27+121}{4}
Multiply 9 and 3 to get 27.
x^{2}=\frac{148}{4}
Add 27 and 121 to get 148.
x^{2}=37
Divide 148 by 4 to get 37.
x=\sqrt{37} x=-\sqrt{37}
Take the square root of both sides of the equation.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{11}{2}\right)^{2}
To raise \frac{3\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}+\frac{121}{4}
Calculate \frac{11}{2} to the power of 2 and get \frac{121}{4}.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}}{4}+\frac{121}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
x^{2}=\frac{\left(3\sqrt{3}\right)^{2}+121}{4}
Since \frac{\left(3\sqrt{3}\right)^{2}}{4} and \frac{121}{4} have the same denominator, add them by adding their numerators.
x^{2}=\frac{3^{2}\left(\sqrt{3}\right)^{2}+121}{4}
Expand \left(3\sqrt{3}\right)^{2}.
x^{2}=\frac{9\left(\sqrt{3}\right)^{2}+121}{4}
Calculate 3 to the power of 2 and get 9.
x^{2}=\frac{9\times 3+121}{4}
The square of \sqrt{3} is 3.
x^{2}=\frac{27+121}{4}
Multiply 9 and 3 to get 27.
x^{2}=\frac{148}{4}
Add 27 and 121 to get 148.
x^{2}=37
Divide 148 by 4 to get 37.
x^{2}-37=0
Subtract 37 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-37\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -37 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-37\right)}}{2}
Square 0.
x=\frac{0±\sqrt{148}}{2}
Multiply -4 times -37.
x=\frac{0±2\sqrt{37}}{2}
Take the square root of 148.
x=\sqrt{37}
Now solve the equation x=\frac{0±2\sqrt{37}}{2} when ± is plus.
x=-\sqrt{37}
Now solve the equation x=\frac{0±2\sqrt{37}}{2} when ± is minus.
x=\sqrt{37} x=-\sqrt{37}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}