Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}\right)^{2}=\left(\sqrt{9-x^{2}}\right)^{2}
Square both sides of the equation.
x^{4}=\left(\sqrt{9-x^{2}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}=9-x^{2}
Calculate \sqrt{9-x^{2}} to the power of 2 and get 9-x^{2}.
x^{4}-9=-x^{2}
Subtract 9 from both sides.
x^{4}-9+x^{2}=0
Add x^{2} to both sides.
t^{2}+t-9=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-9\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and -9 for c in the quadratic formula.
t=\frac{-1±\sqrt{37}}{2}
Do the calculations.
t=\frac{\sqrt{37}-1}{2} t=\frac{-\sqrt{37}-1}{2}
Solve the equation t=\frac{-1±\sqrt{37}}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{2\sqrt{37}-2}}{2} x=-\frac{\sqrt{2\sqrt{37}-2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
\left(\frac{\sqrt{2\sqrt{37}-2}}{2}\right)^{2}=\sqrt{9-\left(\frac{\sqrt{2\sqrt{37}-2}}{2}\right)^{2}}
Substitute \frac{\sqrt{2\sqrt{37}-2}}{2} for x in the equation x^{2}=\sqrt{9-x^{2}}.
\frac{1}{2}\times 37^{\frac{1}{2}}-\frac{1}{2}=\frac{1}{2}\times 37^{\frac{1}{2}}-\frac{1}{2}
Simplify. The value x=\frac{\sqrt{2\sqrt{37}-2}}{2} satisfies the equation.
\left(-\frac{\sqrt{2\sqrt{37}-2}}{2}\right)^{2}=\sqrt{9-\left(-\frac{\sqrt{2\sqrt{37}-2}}{2}\right)^{2}}
Substitute -\frac{\sqrt{2\sqrt{37}-2}}{2} for x in the equation x^{2}=\sqrt{9-x^{2}}.
\frac{1}{2}\times 37^{\frac{1}{2}}-\frac{1}{2}=\frac{1}{2}\times 37^{\frac{1}{2}}-\frac{1}{2}
Simplify. The value x=-\frac{\sqrt{2\sqrt{37}-2}}{2} satisfies the equation.
x=\frac{\sqrt{2\sqrt{37}-2}}{2} x=-\frac{\sqrt{2\sqrt{37}-2}}{2}
List all solutions of x^{2}=\sqrt{9-x^{2}}.