Solve for x
x=\frac{6}{11}\approx 0.545454545
x=-\frac{6}{11}\approx -0.545454545
Graph
Share
Copied to clipboard
x^{2}-\frac{36}{121}=0
Subtract \frac{36}{121} from both sides.
121x^{2}-36=0
Multiply both sides by 121.
\left(11x-6\right)\left(11x+6\right)=0
Consider 121x^{2}-36. Rewrite 121x^{2}-36 as \left(11x\right)^{2}-6^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{6}{11} x=-\frac{6}{11}
To find equation solutions, solve 11x-6=0 and 11x+6=0.
x=\frac{6}{11} x=-\frac{6}{11}
Take the square root of both sides of the equation.
x^{2}-\frac{36}{121}=0
Subtract \frac{36}{121} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{36}{121}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{36}{121} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{36}{121}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{144}{121}}}{2}
Multiply -4 times -\frac{36}{121}.
x=\frac{0±\frac{12}{11}}{2}
Take the square root of \frac{144}{121}.
x=\frac{6}{11}
Now solve the equation x=\frac{0±\frac{12}{11}}{2} when ± is plus.
x=-\frac{6}{11}
Now solve the equation x=\frac{0±\frac{12}{11}}{2} when ± is minus.
x=\frac{6}{11} x=-\frac{6}{11}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}