Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{1}{3}x=2
Subtract \frac{1}{3}x from both sides.
x^{2}-\frac{1}{3}x-2=0
Subtract 2 from both sides.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\left(-\frac{1}{3}\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{1}{3} for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}-4\left(-2\right)}}{2}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}+8}}{2}
Multiply -4 times -2.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{73}{9}}}{2}
Add \frac{1}{9} to 8.
x=\frac{-\left(-\frac{1}{3}\right)±\frac{\sqrt{73}}{3}}{2}
Take the square root of \frac{73}{9}.
x=\frac{\frac{1}{3}±\frac{\sqrt{73}}{3}}{2}
The opposite of -\frac{1}{3} is \frac{1}{3}.
x=\frac{\sqrt{73}+1}{2\times 3}
Now solve the equation x=\frac{\frac{1}{3}±\frac{\sqrt{73}}{3}}{2} when ± is plus. Add \frac{1}{3} to \frac{\sqrt{73}}{3}.
x=\frac{\sqrt{73}+1}{6}
Divide \frac{1+\sqrt{73}}{3} by 2.
x=\frac{1-\sqrt{73}}{2\times 3}
Now solve the equation x=\frac{\frac{1}{3}±\frac{\sqrt{73}}{3}}{2} when ± is minus. Subtract \frac{\sqrt{73}}{3} from \frac{1}{3}.
x=\frac{1-\sqrt{73}}{6}
Divide \frac{1-\sqrt{73}}{3} by 2.
x=\frac{\sqrt{73}+1}{6} x=\frac{1-\sqrt{73}}{6}
The equation is now solved.
x^{2}-\frac{1}{3}x=2
Subtract \frac{1}{3}x from both sides.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=2+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=2+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{73}{36}
Add 2 to \frac{1}{36}.
\left(x-\frac{1}{6}\right)^{2}=\frac{73}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{73}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{73}}{6} x-\frac{1}{6}=-\frac{\sqrt{73}}{6}
Simplify.
x=\frac{\sqrt{73}+1}{6} x=\frac{1-\sqrt{73}}{6}
Add \frac{1}{6} to both sides of the equation.