Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{x^{2}-2x+y^{2}-4}{x-2y-1}\text{, }&x\neq 2y+1\\k\in \mathrm{C}\text{, }&\left(x=-1\text{ and }y=-1\right)\text{ or }\left(x=3\text{ and }y=1\right)\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{x^{2}-2x+y^{2}-4}{x-2y-1}\text{, }&x\neq 2y+1\\k\in \mathrm{R}\text{, }&\left(x=-1\text{ and }y=-1\right)\text{ or }\left(x=3\text{ and }y=1\right)\end{matrix}\right.
Solve for x (complex solution)
x=\frac{\sqrt{20+k^{2}+8ky-4y^{2}}}{2}-\frac{k}{2}+1
x=-\frac{\sqrt{20+k^{2}+8ky-4y^{2}}}{2}-\frac{k}{2}+1
Solve for x
x=\frac{\sqrt{20+k^{2}+8ky-4y^{2}}}{2}-\frac{k}{2}+1
x=-\frac{\sqrt{20+k^{2}+8ky-4y^{2}}}{2}-\frac{k}{2}+1\text{, }y\geq -\frac{\sqrt{80k^{2}+320}}{8}+k\text{ and }y\leq \frac{\sqrt{80k^{2}+320}}{8}+k
Graph
Share
Copied to clipboard
x^{2}+y^{2}+kx-2x-2ky-k-4=0
Use the distributive property to multiply k-2 by x.
y^{2}+kx-2x-2ky-k-4=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
kx-2x-2ky-k-4=-x^{2}-y^{2}
Subtract y^{2} from both sides.
kx-2ky-k-4=-x^{2}-y^{2}+2x
Add 2x to both sides.
kx-2ky-k=-x^{2}-y^{2}+2x+4
Add 4 to both sides.
\left(x-2y-1\right)k=-x^{2}-y^{2}+2x+4
Combine all terms containing k.
\left(x-2y-1\right)k=4-y^{2}+2x-x^{2}
The equation is in standard form.
\frac{\left(x-2y-1\right)k}{x-2y-1}=\frac{4-y^{2}+2x-x^{2}}{x-2y-1}
Divide both sides by x-2y-1.
k=\frac{4-y^{2}+2x-x^{2}}{x-2y-1}
Dividing by x-2y-1 undoes the multiplication by x-2y-1.
x^{2}+y^{2}+kx-2x-2ky-k-4=0
Use the distributive property to multiply k-2 by x.
y^{2}+kx-2x-2ky-k-4=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
kx-2x-2ky-k-4=-x^{2}-y^{2}
Subtract y^{2} from both sides.
kx-2ky-k-4=-x^{2}-y^{2}+2x
Add 2x to both sides.
kx-2ky-k=-x^{2}-y^{2}+2x+4
Add 4 to both sides.
\left(x-2y-1\right)k=-x^{2}-y^{2}+2x+4
Combine all terms containing k.
\left(x-2y-1\right)k=4-y^{2}+2x-x^{2}
The equation is in standard form.
\frac{\left(x-2y-1\right)k}{x-2y-1}=\frac{4-y^{2}+2x-x^{2}}{x-2y-1}
Divide both sides by x-2y-1.
k=\frac{4-y^{2}+2x-x^{2}}{x-2y-1}
Dividing by x-2y-1 undoes the multiplication by x-2y-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}