Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x-6-4x^{2}=3x+64
Subtract 4x^{2} from both sides.
-3x^{2}+x-6=3x+64
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+x-6-3x=64
Subtract 3x from both sides.
-3x^{2}-2x-6=64
Combine x and -3x to get -2x.
-3x^{2}-2x-6-64=0
Subtract 64 from both sides.
-3x^{2}-2x-70=0
Subtract 64 from -6 to get -70.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)\left(-70\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -2 for b, and -70 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)\left(-70\right)}}{2\left(-3\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+12\left(-70\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-2\right)±\sqrt{4-840}}{2\left(-3\right)}
Multiply 12 times -70.
x=\frac{-\left(-2\right)±\sqrt{-836}}{2\left(-3\right)}
Add 4 to -840.
x=\frac{-\left(-2\right)±2\sqrt{209}i}{2\left(-3\right)}
Take the square root of -836.
x=\frac{2±2\sqrt{209}i}{2\left(-3\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{209}i}{-6}
Multiply 2 times -3.
x=\frac{2+2\sqrt{209}i}{-6}
Now solve the equation x=\frac{2±2\sqrt{209}i}{-6} when ± is plus. Add 2 to 2i\sqrt{209}.
x=\frac{-\sqrt{209}i-1}{3}
Divide 2+2i\sqrt{209} by -6.
x=\frac{-2\sqrt{209}i+2}{-6}
Now solve the equation x=\frac{2±2\sqrt{209}i}{-6} when ± is minus. Subtract 2i\sqrt{209} from 2.
x=\frac{-1+\sqrt{209}i}{3}
Divide 2-2i\sqrt{209} by -6.
x=\frac{-\sqrt{209}i-1}{3} x=\frac{-1+\sqrt{209}i}{3}
The equation is now solved.
x^{2}+x-6-4x^{2}=3x+64
Subtract 4x^{2} from both sides.
-3x^{2}+x-6=3x+64
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+x-6-3x=64
Subtract 3x from both sides.
-3x^{2}-2x-6=64
Combine x and -3x to get -2x.
-3x^{2}-2x=64+6
Add 6 to both sides.
-3x^{2}-2x=70
Add 64 and 6 to get 70.
\frac{-3x^{2}-2x}{-3}=\frac{70}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{2}{-3}\right)x=\frac{70}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{2}{3}x=\frac{70}{-3}
Divide -2 by -3.
x^{2}+\frac{2}{3}x=-\frac{70}{3}
Divide 70 by -3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{70}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-\frac{70}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-\frac{209}{9}
Add -\frac{70}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=-\frac{209}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{-\frac{209}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{209}i}{3} x+\frac{1}{3}=-\frac{\sqrt{209}i}{3}
Simplify.
x=\frac{-1+\sqrt{209}i}{3} x=\frac{-\sqrt{209}i-1}{3}
Subtract \frac{1}{3} from both sides of the equation.