Solve for x (complex solution)
x=\sqrt[4]{5}e^{\frac{\left(\arctan(\sqrt{19})+\pi \right)i}{2}}\approx -0.931683417+1.169629851i
x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+3\pi i}{2}}\approx 0.931683417-1.169629851i
x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+3\pi i}{2}}\approx -0.931683417-1.169629851i
x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+\pi i}{2}}\approx 0.931683417+1.169629851i
Graph
Share
Copied to clipboard
t^{2}+t+5=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\times 5}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and 5 for c in the quadratic formula.
t=\frac{-1±\sqrt{-19}}{2}
Do the calculations.
t=\frac{-1+\sqrt{19}i}{2} t=\frac{-\sqrt{19}i-1}{2}
Solve the equation t=\frac{-1±\sqrt{-19}}{2} when ± is plus and when ± is minus.
x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+3\pi i}{2}} x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+\pi i}{2}} x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+3\pi i}{2}} x=\sqrt[4]{5}e^{\frac{\left(\arctan(\sqrt{19})+\pi \right)i}{2}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}