Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x-3x=-3
Subtract 3x from both sides.
x^{2}-2x=-3
Combine x and -3x to get -2x.
x^{2}-2x+3=0
Add 3 to both sides.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-12}}{2}
Multiply -4 times 3.
x=\frac{-\left(-2\right)±\sqrt{-8}}{2}
Add 4 to -12.
x=\frac{-\left(-2\right)±2\sqrt{2}i}{2}
Take the square root of -8.
x=\frac{2±2\sqrt{2}i}{2}
The opposite of -2 is 2.
x=\frac{2+2\sqrt{2}i}{2}
Now solve the equation x=\frac{2±2\sqrt{2}i}{2} when ± is plus. Add 2 to 2i\sqrt{2}.
x=1+\sqrt{2}i
Divide 2+2i\sqrt{2} by 2.
x=\frac{-2\sqrt{2}i+2}{2}
Now solve the equation x=\frac{2±2\sqrt{2}i}{2} when ± is minus. Subtract 2i\sqrt{2} from 2.
x=-\sqrt{2}i+1
Divide 2-2i\sqrt{2} by 2.
x=1+\sqrt{2}i x=-\sqrt{2}i+1
The equation is now solved.
x^{2}+x-3x=-3
Subtract 3x from both sides.
x^{2}-2x=-3
Combine x and -3x to get -2x.
x^{2}-2x+1=-3+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-2
Add -3 to 1.
\left(x-1\right)^{2}=-2
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-2}
Take the square root of both sides of the equation.
x-1=\sqrt{2}i x-1=-\sqrt{2}i
Simplify.
x=1+\sqrt{2}i x=-\sqrt{2}i+1
Add 1 to both sides of the equation.