Solve for x
x=5\sqrt{341}-45\approx 47.330926563
x=-5\sqrt{341}-45\approx -137.330926563
Graph
Share
Copied to clipboard
x^{2}+90x-6500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-90±\sqrt{90^{2}-4\left(-6500\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 90 for b, and -6500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-90±\sqrt{8100-4\left(-6500\right)}}{2}
Square 90.
x=\frac{-90±\sqrt{8100+26000}}{2}
Multiply -4 times -6500.
x=\frac{-90±\sqrt{34100}}{2}
Add 8100 to 26000.
x=\frac{-90±10\sqrt{341}}{2}
Take the square root of 34100.
x=\frac{10\sqrt{341}-90}{2}
Now solve the equation x=\frac{-90±10\sqrt{341}}{2} when ± is plus. Add -90 to 10\sqrt{341}.
x=5\sqrt{341}-45
Divide -90+10\sqrt{341} by 2.
x=\frac{-10\sqrt{341}-90}{2}
Now solve the equation x=\frac{-90±10\sqrt{341}}{2} when ± is minus. Subtract 10\sqrt{341} from -90.
x=-5\sqrt{341}-45
Divide -90-10\sqrt{341} by 2.
x=5\sqrt{341}-45 x=-5\sqrt{341}-45
The equation is now solved.
x^{2}+90x-6500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+90x-6500-\left(-6500\right)=-\left(-6500\right)
Add 6500 to both sides of the equation.
x^{2}+90x=-\left(-6500\right)
Subtracting -6500 from itself leaves 0.
x^{2}+90x=6500
Subtract -6500 from 0.
x^{2}+90x+45^{2}=6500+45^{2}
Divide 90, the coefficient of the x term, by 2 to get 45. Then add the square of 45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+90x+2025=6500+2025
Square 45.
x^{2}+90x+2025=8525
Add 6500 to 2025.
\left(x+45\right)^{2}=8525
Factor x^{2}+90x+2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+45\right)^{2}}=\sqrt{8525}
Take the square root of both sides of the equation.
x+45=5\sqrt{341} x+45=-5\sqrt{341}
Simplify.
x=5\sqrt{341}-45 x=-5\sqrt{341}-45
Subtract 45 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}