Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=e-9
Subtract 9 from both sides.
x=i\sqrt{9-e} x=-i\sqrt{9-e}
The equation is now solved.
x^{2}+9-e=0
Subtract e from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(9-e\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 9-e for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(9-e\right)}}{2}
Square 0.
x=\frac{0±\sqrt{4e-36}}{2}
Multiply -4 times 9-e.
x=\frac{0±2i\sqrt{9-e}}{2}
Take the square root of -36+4e.
x=i\sqrt{9-e}
Now solve the equation x=\frac{0±2i\sqrt{9-e}}{2} when ± is plus.
x=-i\sqrt{9-e}
Now solve the equation x=\frac{0±2i\sqrt{9-e}}{2} when ± is minus.
x=i\sqrt{9-e} x=-i\sqrt{9-e}
The equation is now solved.