Solve for y
y=\frac{x^{2}+5x+18}{10}
Solve for x (complex solution)
x=\frac{\sqrt{40y-47}-5}{2}
x=\frac{-\sqrt{40y-47}-5}{2}
Solve for x
x=\frac{\sqrt{40y-47}-5}{2}
x=\frac{-\sqrt{40y-47}-5}{2}\text{, }y\geq \frac{47}{40}
Graph
Share
Copied to clipboard
x^{2}+5x-10y+18=0
Combine 8x and -3x to get 5x.
5x-10y+18=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-10y+18=-x^{2}-5x
Subtract 5x from both sides.
-10y=-x^{2}-5x-18
Subtract 18 from both sides.
\frac{-10y}{-10}=\frac{-x^{2}-5x-18}{-10}
Divide both sides by -10.
y=\frac{-x^{2}-5x-18}{-10}
Dividing by -10 undoes the multiplication by -10.
y=\frac{x^{2}}{10}+\frac{x}{2}+\frac{9}{5}
Divide -x^{2}-5x-18 by -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}