Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+7x+12=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 1\times 12}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 7 for b, and 12 for c in the quadratic formula.
x=\frac{-7±1}{2}
Do the calculations.
x=-3 x=-4
Solve the equation x=\frac{-7±1}{2} when ± is plus and when ± is minus.
\left(x+3\right)\left(x+4\right)>0
Rewrite the inequality by using the obtained solutions.
x+3<0 x+4<0
For the product to be positive, x+3 and x+4 have to be both negative or both positive. Consider the case when x+3 and x+4 are both negative.
x<-4
The solution satisfying both inequalities is x<-4.
x+4>0 x+3>0
Consider the case when x+3 and x+4 are both positive.
x>-3
The solution satisfying both inequalities is x>-3.
x<-4\text{; }x>-3
The final solution is the union of the obtained solutions.