Solve for x
x=-15
x=9
Graph
Share
Copied to clipboard
x^{2}+6x+9-144=0
Subtract 144 from both sides.
x^{2}+6x-135=0
Subtract 144 from 9 to get -135.
a+b=6 ab=-135
To solve the equation, factor x^{2}+6x-135 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,135 -3,45 -5,27 -9,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -135.
-1+135=134 -3+45=42 -5+27=22 -9+15=6
Calculate the sum for each pair.
a=-9 b=15
The solution is the pair that gives sum 6.
\left(x-9\right)\left(x+15\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=9 x=-15
To find equation solutions, solve x-9=0 and x+15=0.
x^{2}+6x+9-144=0
Subtract 144 from both sides.
x^{2}+6x-135=0
Subtract 144 from 9 to get -135.
a+b=6 ab=1\left(-135\right)=-135
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-135. To find a and b, set up a system to be solved.
-1,135 -3,45 -5,27 -9,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -135.
-1+135=134 -3+45=42 -5+27=22 -9+15=6
Calculate the sum for each pair.
a=-9 b=15
The solution is the pair that gives sum 6.
\left(x^{2}-9x\right)+\left(15x-135\right)
Rewrite x^{2}+6x-135 as \left(x^{2}-9x\right)+\left(15x-135\right).
x\left(x-9\right)+15\left(x-9\right)
Factor out x in the first and 15 in the second group.
\left(x-9\right)\left(x+15\right)
Factor out common term x-9 by using distributive property.
x=9 x=-15
To find equation solutions, solve x-9=0 and x+15=0.
x^{2}+6x+9=144
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+6x+9-144=144-144
Subtract 144 from both sides of the equation.
x^{2}+6x+9-144=0
Subtracting 144 from itself leaves 0.
x^{2}+6x-135=0
Subtract 144 from 9.
x=\frac{-6±\sqrt{6^{2}-4\left(-135\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -135 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-135\right)}}{2}
Square 6.
x=\frac{-6±\sqrt{36+540}}{2}
Multiply -4 times -135.
x=\frac{-6±\sqrt{576}}{2}
Add 36 to 540.
x=\frac{-6±24}{2}
Take the square root of 576.
x=\frac{18}{2}
Now solve the equation x=\frac{-6±24}{2} when ± is plus. Add -6 to 24.
x=9
Divide 18 by 2.
x=-\frac{30}{2}
Now solve the equation x=\frac{-6±24}{2} when ± is minus. Subtract 24 from -6.
x=-15
Divide -30 by 2.
x=9 x=-15
The equation is now solved.
\left(x+3\right)^{2}=144
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{144}
Take the square root of both sides of the equation.
x+3=12 x+3=-12
Simplify.
x=9 x=-15
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}