Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+5x-65-2
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+5x-67
Subtract 2 from -65 to get -67.
factor(2x^{2}+5x-65-2)
Combine x^{2} and x^{2} to get 2x^{2}.
factor(2x^{2}+5x-67)
Subtract 2 from -65 to get -67.
2x^{2}+5x-67=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-67\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{25-4\times 2\left(-67\right)}}{2\times 2}
Square 5.
x=\frac{-5±\sqrt{25-8\left(-67\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-5±\sqrt{25+536}}{2\times 2}
Multiply -8 times -67.
x=\frac{-5±\sqrt{561}}{2\times 2}
Add 25 to 536.
x=\frac{-5±\sqrt{561}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{561}-5}{4}
Now solve the equation x=\frac{-5±\sqrt{561}}{4} when ± is plus. Add -5 to \sqrt{561}.
x=\frac{-\sqrt{561}-5}{4}
Now solve the equation x=\frac{-5±\sqrt{561}}{4} when ± is minus. Subtract \sqrt{561} from -5.
2x^{2}+5x-67=2\left(x-\frac{\sqrt{561}-5}{4}\right)\left(x-\frac{-\sqrt{561}-5}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{561}}{4} for x_{1} and \frac{-5-\sqrt{561}}{4} for x_{2}.