Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+432+43x=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-43±\sqrt{43^{2}-4\times 1\times 432}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 43 for b, and 432 for c in the quadratic formula.
x=\frac{-43±11}{2}
Do the calculations.
x=-16 x=-27
Solve the equation x=\frac{-43±11}{2} when ± is plus and when ± is minus.
\left(x+16\right)\left(x+27\right)>0
Rewrite the inequality by using the obtained solutions.
x+16<0 x+27<0
For the product to be positive, x+16 and x+27 have to be both negative or both positive. Consider the case when x+16 and x+27 are both negative.
x<-27
The solution satisfying both inequalities is x<-27.
x+27>0 x+16>0
Consider the case when x+16 and x+27 are both positive.
x>-16
The solution satisfying both inequalities is x>-16.
x<-27\text{; }x>-16
The final solution is the union of the obtained solutions.