Solve for x
x=1
Graph
Share
Copied to clipboard
x^{2}+4\times \frac{\left(\sqrt{3}\right)^{2}}{6^{2}}\left(x-4\right)^{2}=4
To raise \frac{\sqrt{3}}{6} to a power, raise both numerator and denominator to the power and then divide.
x^{2}+4\times \frac{\left(\sqrt{3}\right)^{2}}{6^{2}}\left(x^{2}-8x+16\right)=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}+\frac{4\left(\sqrt{3}\right)^{2}}{6^{2}}\left(x^{2}-8x+16\right)=4
Express 4\times \frac{\left(\sqrt{3}\right)^{2}}{6^{2}} as a single fraction.
x^{2}+\frac{4\left(\sqrt{3}\right)^{2}\left(x^{2}-8x+16\right)}{6^{2}}=4
Express \frac{4\left(\sqrt{3}\right)^{2}}{6^{2}}\left(x^{2}-8x+16\right) as a single fraction.
\frac{x^{2}\times 6^{2}}{6^{2}}+\frac{4\left(\sqrt{3}\right)^{2}\left(x^{2}-8x+16\right)}{6^{2}}=4
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{6^{2}}{6^{2}}.
\frac{x^{2}\times 6^{2}+4\left(\sqrt{3}\right)^{2}\left(x^{2}-8x+16\right)}{6^{2}}=4
Since \frac{x^{2}\times 6^{2}}{6^{2}} and \frac{4\left(\sqrt{3}\right)^{2}\left(x^{2}-8x+16\right)}{6^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}\times 36+4\left(\sqrt{3}\right)^{2}\left(x^{2}-8x+16\right)}{6^{2}}=4
Calculate 6 to the power of 2 and get 36.
\frac{x^{2}\times 36+4\times 3\left(x^{2}-8x+16\right)}{6^{2}}=4
The square of \sqrt{3} is 3.
\frac{x^{2}\times 36+12\left(x^{2}-8x+16\right)}{6^{2}}=4
Multiply 4 and 3 to get 12.
\frac{x^{2}\times 36+12\left(x^{2}-8x+16\right)}{36}=4
Calculate 6 to the power of 2 and get 36.
x^{2}+\frac{1}{3}\left(x^{2}-8x+16\right)=4
Divide each term of x^{2}\times 36+12\left(x^{2}-8x+16\right) by 36 to get x^{2}+\frac{1}{3}\left(x^{2}-8x+16\right).
x^{2}+\frac{1}{3}x^{2}-\frac{8}{3}x+\frac{16}{3}=4
Use the distributive property to multiply \frac{1}{3} by x^{2}-8x+16.
\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{16}{3}=4
Combine x^{2} and \frac{1}{3}x^{2} to get \frac{4}{3}x^{2}.
\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{16}{3}-4=0
Subtract 4 from both sides.
\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}=0
Subtract 4 from \frac{16}{3} to get \frac{4}{3}.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\left(-\frac{8}{3}\right)^{2}-4\times \frac{4}{3}\times \frac{4}{3}}}{2\times \frac{4}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4}{3} for a, -\frac{8}{3} for b, and \frac{4}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\frac{64}{9}-4\times \frac{4}{3}\times \frac{4}{3}}}{2\times \frac{4}{3}}
Square -\frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\frac{64}{9}-\frac{16}{3}\times \frac{4}{3}}}{2\times \frac{4}{3}}
Multiply -4 times \frac{4}{3}.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\frac{64-64}{9}}}{2\times \frac{4}{3}}
Multiply -\frac{16}{3} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{0}}{2\times \frac{4}{3}}
Add \frac{64}{9} to -\frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{-\frac{8}{3}}{2\times \frac{4}{3}}
Take the square root of 0.
x=\frac{\frac{8}{3}}{2\times \frac{4}{3}}
The opposite of -\frac{8}{3} is \frac{8}{3}.
x=\frac{\frac{8}{3}}{\frac{8}{3}}
Multiply 2 times \frac{4}{3}.
x=1
Divide \frac{8}{3} by \frac{8}{3} by multiplying \frac{8}{3} by the reciprocal of \frac{8}{3}.
x^{2}+4\times \frac{\left(\sqrt{3}\right)^{2}}{6^{2}}\left(x-4\right)^{2}=4
To raise \frac{\sqrt{3}}{6} to a power, raise both numerator and denominator to the power and then divide.
x^{2}+4\times \frac{\left(\sqrt{3}\right)^{2}}{6^{2}}\left(x^{2}-8x+16\right)=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}+\frac{4\left(\sqrt{3}\right)^{2}}{6^{2}}\left(x^{2}-8x+16\right)=4
Express 4\times \frac{\left(\sqrt{3}\right)^{2}}{6^{2}} as a single fraction.
x^{2}+\frac{4\left(\sqrt{3}\right)^{2}\left(x^{2}-8x+16\right)}{6^{2}}=4
Express \frac{4\left(\sqrt{3}\right)^{2}}{6^{2}}\left(x^{2}-8x+16\right) as a single fraction.
\frac{x^{2}\times 6^{2}}{6^{2}}+\frac{4\left(\sqrt{3}\right)^{2}\left(x^{2}-8x+16\right)}{6^{2}}=4
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{6^{2}}{6^{2}}.
\frac{x^{2}\times 6^{2}+4\left(\sqrt{3}\right)^{2}\left(x^{2}-8x+16\right)}{6^{2}}=4
Since \frac{x^{2}\times 6^{2}}{6^{2}} and \frac{4\left(\sqrt{3}\right)^{2}\left(x^{2}-8x+16\right)}{6^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}\times 36+4\left(\sqrt{3}\right)^{2}\left(x^{2}-8x+16\right)}{6^{2}}=4
Calculate 6 to the power of 2 and get 36.
\frac{x^{2}\times 36+4\times 3\left(x^{2}-8x+16\right)}{6^{2}}=4
The square of \sqrt{3} is 3.
\frac{x^{2}\times 36+12\left(x^{2}-8x+16\right)}{6^{2}}=4
Multiply 4 and 3 to get 12.
\frac{x^{2}\times 36+12\left(x^{2}-8x+16\right)}{36}=4
Calculate 6 to the power of 2 and get 36.
x^{2}+\frac{1}{3}\left(x^{2}-8x+16\right)=4
Divide each term of x^{2}\times 36+12\left(x^{2}-8x+16\right) by 36 to get x^{2}+\frac{1}{3}\left(x^{2}-8x+16\right).
x^{2}+\frac{1}{3}x^{2}-\frac{8}{3}x+\frac{16}{3}=4
Use the distributive property to multiply \frac{1}{3} by x^{2}-8x+16.
\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{16}{3}=4
Combine x^{2} and \frac{1}{3}x^{2} to get \frac{4}{3}x^{2}.
\frac{4}{3}x^{2}-\frac{8}{3}x=4-\frac{16}{3}
Subtract \frac{16}{3} from both sides.
\frac{4}{3}x^{2}-\frac{8}{3}x=-\frac{4}{3}
Subtract \frac{16}{3} from 4 to get -\frac{4}{3}.
\frac{\frac{4}{3}x^{2}-\frac{8}{3}x}{\frac{4}{3}}=-\frac{\frac{4}{3}}{\frac{4}{3}}
Divide both sides of the equation by \frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{8}{3}}{\frac{4}{3}}\right)x=-\frac{\frac{4}{3}}{\frac{4}{3}}
Dividing by \frac{4}{3} undoes the multiplication by \frac{4}{3}.
x^{2}-2x=-\frac{\frac{4}{3}}{\frac{4}{3}}
Divide -\frac{8}{3} by \frac{4}{3} by multiplying -\frac{8}{3} by the reciprocal of \frac{4}{3}.
x^{2}-2x=-1
Divide -\frac{4}{3} by \frac{4}{3} by multiplying -\frac{4}{3} by the reciprocal of \frac{4}{3}.
x^{2}-2x+1=-1+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=0
Add -1 to 1.
\left(x-1\right)^{2}=0
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-1=0 x-1=0
Simplify.
x=1 x=1
Add 1 to both sides of the equation.
x=1
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}