Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+32x-0.1056=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{32^{2}-4\left(-0.1056\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 32 for b, and -0.1056 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\left(-0.1056\right)}}{2}
Square 32.
x=\frac{-32±\sqrt{1024+0.4224}}{2}
Multiply -4 times -0.1056.
x=\frac{-32±\sqrt{1024.4224}}{2}
Add 1024 to 0.4224.
x=\frac{-32±\frac{2\sqrt{160066}}{25}}{2}
Take the square root of 1024.4224.
x=\frac{\frac{2\sqrt{160066}}{25}-32}{2}
Now solve the equation x=\frac{-32±\frac{2\sqrt{160066}}{25}}{2} when ± is plus. Add -32 to \frac{2\sqrt{160066}}{25}.
x=\frac{\sqrt{160066}}{25}-16
Divide -32+\frac{2\sqrt{160066}}{25} by 2.
x=\frac{-\frac{2\sqrt{160066}}{25}-32}{2}
Now solve the equation x=\frac{-32±\frac{2\sqrt{160066}}{25}}{2} when ± is minus. Subtract \frac{2\sqrt{160066}}{25} from -32.
x=-\frac{\sqrt{160066}}{25}-16
Divide -32-\frac{2\sqrt{160066}}{25} by 2.
x=\frac{\sqrt{160066}}{25}-16 x=-\frac{\sqrt{160066}}{25}-16
The equation is now solved.
x^{2}+32x-0.1056=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+32x-0.1056-\left(-0.1056\right)=-\left(-0.1056\right)
Add 0.1056 to both sides of the equation.
x^{2}+32x=-\left(-0.1056\right)
Subtracting -0.1056 from itself leaves 0.
x^{2}+32x=0.1056
Subtract -0.1056 from 0.
x^{2}+32x+16^{2}=0.1056+16^{2}
Divide 32, the coefficient of the x term, by 2 to get 16. Then add the square of 16 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+32x+256=0.1056+256
Square 16.
x^{2}+32x+256=256.1056
Add 0.1056 to 256.
\left(x+16\right)^{2}=256.1056
Factor x^{2}+32x+256. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+16\right)^{2}}=\sqrt{256.1056}
Take the square root of both sides of the equation.
x+16=\frac{\sqrt{160066}}{25} x+16=-\frac{\sqrt{160066}}{25}
Simplify.
x=\frac{\sqrt{160066}}{25}-16 x=-\frac{\sqrt{160066}}{25}-16
Subtract 16 from both sides of the equation.