Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}+3x-4\right)^{2}=\left(5\sqrt{x^{2}+3x-4}\right)^{2}
Square both sides of the equation.
x^{4}+6x^{3}+x^{2}-24x+16=\left(5\sqrt{x^{2}+3x-4}\right)^{2}
Square x^{2}+3x-4.
x^{4}+6x^{3}+x^{2}-24x+16=5^{2}\left(\sqrt{x^{2}+3x-4}\right)^{2}
Expand \left(5\sqrt{x^{2}+3x-4}\right)^{2}.
x^{4}+6x^{3}+x^{2}-24x+16=25\left(\sqrt{x^{2}+3x-4}\right)^{2}
Calculate 5 to the power of 2 and get 25.
x^{4}+6x^{3}+x^{2}-24x+16=25\left(x^{2}+3x-4\right)
Calculate \sqrt{x^{2}+3x-4} to the power of 2 and get x^{2}+3x-4.
x^{4}+6x^{3}+x^{2}-24x+16=25x^{2}+75x-100
Use the distributive property to multiply 25 by x^{2}+3x-4.
x^{4}+6x^{3}+x^{2}-24x+16-25x^{2}=75x-100
Subtract 25x^{2} from both sides.
x^{4}+6x^{3}-24x^{2}-24x+16=75x-100
Combine x^{2} and -25x^{2} to get -24x^{2}.
x^{4}+6x^{3}-24x^{2}-24x+16-75x=-100
Subtract 75x from both sides.
x^{4}+6x^{3}-24x^{2}-99x+16=-100
Combine -24x and -75x to get -99x.
x^{4}+6x^{3}-24x^{2}-99x+16+100=0
Add 100 to both sides.
x^{4}+6x^{3}-24x^{2}-99x+116=0
Add 16 and 100 to get 116.
±116,±58,±29,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 116 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}+7x^{2}-17x-116=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}+6x^{3}-24x^{2}-99x+116 by x-1 to get x^{3}+7x^{2}-17x-116. Solve the equation where the result equals to 0.
±116,±58,±29,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -116 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-4
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+3x-29=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+7x^{2}-17x-116 by x+4 to get x^{2}+3x-29. Solve the equation where the result equals to 0.
x=\frac{-3±\sqrt{3^{2}-4\times 1\left(-29\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 3 for b, and -29 for c in the quadratic formula.
x=\frac{-3±5\sqrt{5}}{2}
Do the calculations.
x=\frac{-5\sqrt{5}-3}{2} x=\frac{5\sqrt{5}-3}{2}
Solve the equation x^{2}+3x-29=0 when ± is plus and when ± is minus.
x=1 x=-4 x=\frac{-5\sqrt{5}-3}{2} x=\frac{5\sqrt{5}-3}{2}
List all found solutions.
1^{2}+3\times 1-4=5\sqrt{1^{2}+3\times 1-4}
Substitute 1 for x in the equation x^{2}+3x-4=5\sqrt{x^{2}+3x-4}.
0=0
Simplify. The value x=1 satisfies the equation.
\left(-4\right)^{2}+3\left(-4\right)-4=5\sqrt{\left(-4\right)^{2}+3\left(-4\right)-4}
Substitute -4 for x in the equation x^{2}+3x-4=5\sqrt{x^{2}+3x-4}.
0=0
Simplify. The value x=-4 satisfies the equation.
\left(\frac{-5\sqrt{5}-3}{2}\right)^{2}+3\times \frac{-5\sqrt{5}-3}{2}-4=5\sqrt{\left(\frac{-5\sqrt{5}-3}{2}\right)^{2}+3\times \frac{-5\sqrt{5}-3}{2}-4}
Substitute \frac{-5\sqrt{5}-3}{2} for x in the equation x^{2}+3x-4=5\sqrt{x^{2}+3x-4}.
25=25
Simplify. The value x=\frac{-5\sqrt{5}-3}{2} satisfies the equation.
\left(\frac{5\sqrt{5}-3}{2}\right)^{2}+3\times \frac{5\sqrt{5}-3}{2}-4=5\sqrt{\left(\frac{5\sqrt{5}-3}{2}\right)^{2}+3\times \frac{5\sqrt{5}-3}{2}-4}
Substitute \frac{5\sqrt{5}-3}{2} for x in the equation x^{2}+3x-4=5\sqrt{x^{2}+3x-4}.
25=25
Simplify. The value x=\frac{5\sqrt{5}-3}{2} satisfies the equation.
x=1 x=-4 x=\frac{-5\sqrt{5}-3}{2} x=\frac{5\sqrt{5}-3}{2}
List all solutions of x^{2}+3x-4=5\sqrt{x^{2}+3x-4}.