Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{a+2}{4}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&a=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{a+2}{4}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Solve for a
a=4x-2
a=0
Graph
Quiz
Linear Equation
5 problems similar to:
x ^ { 2 } + 2 x ( a + 1 ) = ( x - a ) ^ { 2 } + 2 ( x + a )
Share
Copied to clipboard
x^{2}+2xa+2x=\left(x-a\right)^{2}+2\left(x+a\right)
Use the distributive property to multiply 2x by a+1.
x^{2}+2xa+2x=x^{2}-2xa+a^{2}+2\left(x+a\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-a\right)^{2}.
x^{2}+2xa+2x=x^{2}-2xa+a^{2}+2x+2a
Use the distributive property to multiply 2 by x+a.
x^{2}+2xa+2x-x^{2}=-2xa+a^{2}+2x+2a
Subtract x^{2} from both sides.
2xa+2x=-2xa+a^{2}+2x+2a
Combine x^{2} and -x^{2} to get 0.
2xa+2x+2xa=a^{2}+2x+2a
Add 2xa to both sides.
4xa+2x=a^{2}+2x+2a
Combine 2xa and 2xa to get 4xa.
4xa+2x-2x=a^{2}+2a
Subtract 2x from both sides.
4xa=a^{2}+2a
Combine 2x and -2x to get 0.
4ax=a^{2}+2a
The equation is in standard form.
\frac{4ax}{4a}=\frac{a\left(a+2\right)}{4a}
Divide both sides by 4a.
x=\frac{a\left(a+2\right)}{4a}
Dividing by 4a undoes the multiplication by 4a.
x=\frac{a}{4}+\frac{1}{2}
Divide a\left(2+a\right) by 4a.
x^{2}+2xa+2x=\left(x-a\right)^{2}+2\left(x+a\right)
Use the distributive property to multiply 2x by a+1.
x^{2}+2xa+2x=x^{2}-2xa+a^{2}+2\left(x+a\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-a\right)^{2}.
x^{2}+2xa+2x=x^{2}-2xa+a^{2}+2x+2a
Use the distributive property to multiply 2 by x+a.
x^{2}+2xa+2x-x^{2}=-2xa+a^{2}+2x+2a
Subtract x^{2} from both sides.
2xa+2x=-2xa+a^{2}+2x+2a
Combine x^{2} and -x^{2} to get 0.
2xa+2x+2xa=a^{2}+2x+2a
Add 2xa to both sides.
4xa+2x=a^{2}+2x+2a
Combine 2xa and 2xa to get 4xa.
4xa+2x-2x=a^{2}+2a
Subtract 2x from both sides.
4xa=a^{2}+2a
Combine 2x and -2x to get 0.
4ax=a^{2}+2a
The equation is in standard form.
\frac{4ax}{4a}=\frac{a\left(a+2\right)}{4a}
Divide both sides by 4a.
x=\frac{a\left(a+2\right)}{4a}
Dividing by 4a undoes the multiplication by 4a.
x=\frac{a}{4}+\frac{1}{2}
Divide a\left(2+a\right) by 4a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}