Solve for x
x=3\sqrt{7}-9\approx -1.062746067
x=-3\sqrt{7}-9\approx -16.937253933
Graph
Share
Copied to clipboard
x^{2}+18x+81=63
Add -18 and 81 to get 63.
x^{2}+18x+81-63=0
Subtract 63 from both sides.
x^{2}+18x+18=0
Subtract 63 from 81 to get 18.
x=\frac{-18±\sqrt{18^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 18 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 18}}{2}
Square 18.
x=\frac{-18±\sqrt{324-72}}{2}
Multiply -4 times 18.
x=\frac{-18±\sqrt{252}}{2}
Add 324 to -72.
x=\frac{-18±6\sqrt{7}}{2}
Take the square root of 252.
x=\frac{6\sqrt{7}-18}{2}
Now solve the equation x=\frac{-18±6\sqrt{7}}{2} when ± is plus. Add -18 to 6\sqrt{7}.
x=3\sqrt{7}-9
Divide -18+6\sqrt{7} by 2.
x=\frac{-6\sqrt{7}-18}{2}
Now solve the equation x=\frac{-18±6\sqrt{7}}{2} when ± is minus. Subtract 6\sqrt{7} from -18.
x=-3\sqrt{7}-9
Divide -18-6\sqrt{7} by 2.
x=3\sqrt{7}-9 x=-3\sqrt{7}-9
The equation is now solved.
x^{2}+18x+81=63
Add -18 to 81.
\left(x+9\right)^{2}=63
Factor x^{2}+18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{63}
Take the square root of both sides of the equation.
x+9=3\sqrt{7} x+9=-3\sqrt{7}
Simplify.
x=3\sqrt{7}-9 x=-3\sqrt{7}-9
Subtract 9 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}