Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+142x-120=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-142±\sqrt{142^{2}-4\left(-120\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-142±\sqrt{20164-4\left(-120\right)}}{2}
Square 142.
x=\frac{-142±\sqrt{20164+480}}{2}
Multiply -4 times -120.
x=\frac{-142±\sqrt{20644}}{2}
Add 20164 to 480.
x=\frac{-142±2\sqrt{5161}}{2}
Take the square root of 20644.
x=\frac{2\sqrt{5161}-142}{2}
Now solve the equation x=\frac{-142±2\sqrt{5161}}{2} when ± is plus. Add -142 to 2\sqrt{5161}.
x=\sqrt{5161}-71
Divide -142+2\sqrt{5161} by 2.
x=\frac{-2\sqrt{5161}-142}{2}
Now solve the equation x=\frac{-142±2\sqrt{5161}}{2} when ± is minus. Subtract 2\sqrt{5161} from -142.
x=-\sqrt{5161}-71
Divide -142-2\sqrt{5161} by 2.
x^{2}+142x-120=\left(x-\left(\sqrt{5161}-71\right)\right)\left(x-\left(-\sqrt{5161}-71\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -71+\sqrt{5161} for x_{1} and -71-\sqrt{5161} for x_{2}.
x ^ 2 +142x -120 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -142 rs = -120
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -71 - u s = -71 + u
Two numbers r and s sum up to -142 exactly when the average of the two numbers is \frac{1}{2}*-142 = -71. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-71 - u) (-71 + u) = -120
To solve for unknown quantity u, substitute these in the product equation rs = -120
5041 - u^2 = -120
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -120-5041 = -5161
Simplify the expression by subtracting 5041 on both sides
u^2 = 5161 u = \pm\sqrt{5161} = \pm \sqrt{5161}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-71 - \sqrt{5161} = -142.840 s = -71 + \sqrt{5161} = 0.840
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.