Solve for x (complex solution)
x=\sqrt{5161}-70\approx 1.840100223
x=-\left(\sqrt{5161}+70\right)\approx -141.840100223
Solve for x
x=\sqrt{5161}-70\approx 1.840100223
x=-\sqrt{5161}-70\approx -141.840100223
Graph
Share
Copied to clipboard
x^{2}+140x=261
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+140x-261=261-261
Subtract 261 from both sides of the equation.
x^{2}+140x-261=0
Subtracting 261 from itself leaves 0.
x=\frac{-140±\sqrt{140^{2}-4\left(-261\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 140 for b, and -261 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-140±\sqrt{19600-4\left(-261\right)}}{2}
Square 140.
x=\frac{-140±\sqrt{19600+1044}}{2}
Multiply -4 times -261.
x=\frac{-140±\sqrt{20644}}{2}
Add 19600 to 1044.
x=\frac{-140±2\sqrt{5161}}{2}
Take the square root of 20644.
x=\frac{2\sqrt{5161}-140}{2}
Now solve the equation x=\frac{-140±2\sqrt{5161}}{2} when ± is plus. Add -140 to 2\sqrt{5161}.
x=\sqrt{5161}-70
Divide -140+2\sqrt{5161} by 2.
x=\frac{-2\sqrt{5161}-140}{2}
Now solve the equation x=\frac{-140±2\sqrt{5161}}{2} when ± is minus. Subtract 2\sqrt{5161} from -140.
x=-\sqrt{5161}-70
Divide -140-2\sqrt{5161} by 2.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
The equation is now solved.
x^{2}+140x=261
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+140x+70^{2}=261+70^{2}
Divide 140, the coefficient of the x term, by 2 to get 70. Then add the square of 70 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+140x+4900=261+4900
Square 70.
x^{2}+140x+4900=5161
Add 261 to 4900.
\left(x+70\right)^{2}=5161
Factor x^{2}+140x+4900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+70\right)^{2}}=\sqrt{5161}
Take the square root of both sides of the equation.
x+70=\sqrt{5161} x+70=-\sqrt{5161}
Simplify.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
Subtract 70 from both sides of the equation.
x^{2}+140x=261
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+140x-261=261-261
Subtract 261 from both sides of the equation.
x^{2}+140x-261=0
Subtracting 261 from itself leaves 0.
x=\frac{-140±\sqrt{140^{2}-4\left(-261\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 140 for b, and -261 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-140±\sqrt{19600-4\left(-261\right)}}{2}
Square 140.
x=\frac{-140±\sqrt{19600+1044}}{2}
Multiply -4 times -261.
x=\frac{-140±\sqrt{20644}}{2}
Add 19600 to 1044.
x=\frac{-140±2\sqrt{5161}}{2}
Take the square root of 20644.
x=\frac{2\sqrt{5161}-140}{2}
Now solve the equation x=\frac{-140±2\sqrt{5161}}{2} when ± is plus. Add -140 to 2\sqrt{5161}.
x=\sqrt{5161}-70
Divide -140+2\sqrt{5161} by 2.
x=\frac{-2\sqrt{5161}-140}{2}
Now solve the equation x=\frac{-140±2\sqrt{5161}}{2} when ± is minus. Subtract 2\sqrt{5161} from -140.
x=-\sqrt{5161}-70
Divide -140-2\sqrt{5161} by 2.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
The equation is now solved.
x^{2}+140x=261
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+140x+70^{2}=261+70^{2}
Divide 140, the coefficient of the x term, by 2 to get 70. Then add the square of 70 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+140x+4900=261+4900
Square 70.
x^{2}+140x+4900=5161
Add 261 to 4900.
\left(x+70\right)^{2}=5161
Factor x^{2}+140x+4900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+70\right)^{2}}=\sqrt{5161}
Take the square root of both sides of the equation.
x+70=\sqrt{5161} x+70=-\sqrt{5161}
Simplify.
x=\sqrt{5161}-70 x=-\sqrt{5161}-70
Subtract 70 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}