Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+14x-26=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+14x-26-4=4-4
Subtract 4 from both sides of the equation.
x^{2}+14x-26-4=0
Subtracting 4 from itself leaves 0.
x^{2}+14x-30=0
Subtract 4 from -26.
x=\frac{-14±\sqrt{14^{2}-4\left(-30\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-30\right)}}{2}
Square 14.
x=\frac{-14±\sqrt{196+120}}{2}
Multiply -4 times -30.
x=\frac{-14±\sqrt{316}}{2}
Add 196 to 120.
x=\frac{-14±2\sqrt{79}}{2}
Take the square root of 316.
x=\frac{2\sqrt{79}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{79}}{2} when ± is plus. Add -14 to 2\sqrt{79}.
x=\sqrt{79}-7
Divide -14+2\sqrt{79} by 2.
x=\frac{-2\sqrt{79}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{79}}{2} when ± is minus. Subtract 2\sqrt{79} from -14.
x=-\sqrt{79}-7
Divide -14-2\sqrt{79} by 2.
x=\sqrt{79}-7 x=-\sqrt{79}-7
The equation is now solved.
x^{2}+14x-26=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+14x-26-\left(-26\right)=4-\left(-26\right)
Add 26 to both sides of the equation.
x^{2}+14x=4-\left(-26\right)
Subtracting -26 from itself leaves 0.
x^{2}+14x=30
Subtract -26 from 4.
x^{2}+14x+7^{2}=30+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=30+49
Square 7.
x^{2}+14x+49=79
Add 30 to 49.
\left(x+7\right)^{2}=79
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{79}
Take the square root of both sides of the equation.
x+7=\sqrt{79} x+7=-\sqrt{79}
Simplify.
x=\sqrt{79}-7 x=-\sqrt{79}-7
Subtract 7 from both sides of the equation.
x^{2}+14x-26=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+14x-26-4=4-4
Subtract 4 from both sides of the equation.
x^{2}+14x-26-4=0
Subtracting 4 from itself leaves 0.
x^{2}+14x-30=0
Subtract 4 from -26.
x=\frac{-14±\sqrt{14^{2}-4\left(-30\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-30\right)}}{2}
Square 14.
x=\frac{-14±\sqrt{196+120}}{2}
Multiply -4 times -30.
x=\frac{-14±\sqrt{316}}{2}
Add 196 to 120.
x=\frac{-14±2\sqrt{79}}{2}
Take the square root of 316.
x=\frac{2\sqrt{79}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{79}}{2} when ± is plus. Add -14 to 2\sqrt{79}.
x=\sqrt{79}-7
Divide -14+2\sqrt{79} by 2.
x=\frac{-2\sqrt{79}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{79}}{2} when ± is minus. Subtract 2\sqrt{79} from -14.
x=-\sqrt{79}-7
Divide -14-2\sqrt{79} by 2.
x=\sqrt{79}-7 x=-\sqrt{79}-7
The equation is now solved.
x^{2}+14x-26=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+14x-26-\left(-26\right)=4-\left(-26\right)
Add 26 to both sides of the equation.
x^{2}+14x=4-\left(-26\right)
Subtracting -26 from itself leaves 0.
x^{2}+14x=30
Subtract -26 from 4.
x^{2}+14x+7^{2}=30+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=30+49
Square 7.
x^{2}+14x+49=79
Add 30 to 49.
\left(x+7\right)^{2}=79
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{79}
Take the square root of both sides of the equation.
x+7=\sqrt{79} x+7=-\sqrt{79}
Simplify.
x=\sqrt{79}-7 x=-\sqrt{79}-7
Subtract 7 from both sides of the equation.