Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+10x+5+7x^{2}=-14x-10
Add 7x^{2} to both sides.
8x^{2}+10x+5=-14x-10
Combine x^{2} and 7x^{2} to get 8x^{2}.
8x^{2}+10x+5+14x=-10
Add 14x to both sides.
8x^{2}+24x+5=-10
Combine 10x and 14x to get 24x.
8x^{2}+24x+5+10=0
Add 10 to both sides.
8x^{2}+24x+15=0
Add 5 and 10 to get 15.
x=\frac{-24±\sqrt{24^{2}-4\times 8\times 15}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 24 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 8\times 15}}{2\times 8}
Square 24.
x=\frac{-24±\sqrt{576-32\times 15}}{2\times 8}
Multiply -4 times 8.
x=\frac{-24±\sqrt{576-480}}{2\times 8}
Multiply -32 times 15.
x=\frac{-24±\sqrt{96}}{2\times 8}
Add 576 to -480.
x=\frac{-24±4\sqrt{6}}{2\times 8}
Take the square root of 96.
x=\frac{-24±4\sqrt{6}}{16}
Multiply 2 times 8.
x=\frac{4\sqrt{6}-24}{16}
Now solve the equation x=\frac{-24±4\sqrt{6}}{16} when ± is plus. Add -24 to 4\sqrt{6}.
x=\frac{\sqrt{6}}{4}-\frac{3}{2}
Divide -24+4\sqrt{6} by 16.
x=\frac{-4\sqrt{6}-24}{16}
Now solve the equation x=\frac{-24±4\sqrt{6}}{16} when ± is minus. Subtract 4\sqrt{6} from -24.
x=-\frac{\sqrt{6}}{4}-\frac{3}{2}
Divide -24-4\sqrt{6} by 16.
x=\frac{\sqrt{6}}{4}-\frac{3}{2} x=-\frac{\sqrt{6}}{4}-\frac{3}{2}
The equation is now solved.
x^{2}+10x+5+7x^{2}=-14x-10
Add 7x^{2} to both sides.
8x^{2}+10x+5=-14x-10
Combine x^{2} and 7x^{2} to get 8x^{2}.
8x^{2}+10x+5+14x=-10
Add 14x to both sides.
8x^{2}+24x+5=-10
Combine 10x and 14x to get 24x.
8x^{2}+24x=-10-5
Subtract 5 from both sides.
8x^{2}+24x=-15
Subtract 5 from -10 to get -15.
\frac{8x^{2}+24x}{8}=-\frac{15}{8}
Divide both sides by 8.
x^{2}+\frac{24}{8}x=-\frac{15}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+3x=-\frac{15}{8}
Divide 24 by 8.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{15}{8}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-\frac{15}{8}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{3}{8}
Add -\frac{15}{8} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{3}{8}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{3}{8}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{6}}{4} x+\frac{3}{2}=-\frac{\sqrt{6}}{4}
Simplify.
x=\frac{\sqrt{6}}{4}-\frac{3}{2} x=-\frac{\sqrt{6}}{4}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.