Solve for x
x = \frac{3 \sqrt{4909} - 17}{20} \approx 9.659638433
x=\frac{-3\sqrt{4909}-17}{20}\approx -11.359638433
Graph
Share
Copied to clipboard
x^{2}+1.7x-109.73=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1.7±\sqrt{1.7^{2}-4\left(-109.73\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1.7 for b, and -109.73 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1.7±\sqrt{2.89-4\left(-109.73\right)}}{2}
Square 1.7 by squaring both the numerator and the denominator of the fraction.
x=\frac{-1.7±\sqrt{2.89+438.92}}{2}
Multiply -4 times -109.73.
x=\frac{-1.7±\sqrt{441.81}}{2}
Add 2.89 to 438.92 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-1.7±\frac{3\sqrt{4909}}{10}}{2}
Take the square root of 441.81.
x=\frac{3\sqrt{4909}-17}{2\times 10}
Now solve the equation x=\frac{-1.7±\frac{3\sqrt{4909}}{10}}{2} when ± is plus. Add -1.7 to \frac{3\sqrt{4909}}{10}.
x=\frac{3\sqrt{4909}-17}{20}
Divide \frac{-17+3\sqrt{4909}}{10} by 2.
x=\frac{-3\sqrt{4909}-17}{2\times 10}
Now solve the equation x=\frac{-1.7±\frac{3\sqrt{4909}}{10}}{2} when ± is minus. Subtract \frac{3\sqrt{4909}}{10} from -1.7.
x=\frac{-3\sqrt{4909}-17}{20}
Divide \frac{-17-3\sqrt{4909}}{10} by 2.
x=\frac{3\sqrt{4909}-17}{20} x=\frac{-3\sqrt{4909}-17}{20}
The equation is now solved.
x^{2}+1.7x-109.73=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+1.7x-109.73-\left(-109.73\right)=-\left(-109.73\right)
Add 109.73 to both sides of the equation.
x^{2}+1.7x=-\left(-109.73\right)
Subtracting -109.73 from itself leaves 0.
x^{2}+1.7x=109.73
Subtract -109.73 from 0.
x^{2}+1.7x+0.85^{2}=109.73+0.85^{2}
Divide 1.7, the coefficient of the x term, by 2 to get 0.85. Then add the square of 0.85 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+1.7x+0.7225=109.73+0.7225
Square 0.85 by squaring both the numerator and the denominator of the fraction.
x^{2}+1.7x+0.7225=110.4525
Add 109.73 to 0.7225 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.85\right)^{2}=110.4525
Factor x^{2}+1.7x+0.7225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.85\right)^{2}}=\sqrt{110.4525}
Take the square root of both sides of the equation.
x+0.85=\frac{3\sqrt{4909}}{20} x+0.85=-\frac{3\sqrt{4909}}{20}
Simplify.
x=\frac{3\sqrt{4909}-17}{20} x=\frac{-3\sqrt{4909}-17}{20}
Subtract 0.85 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}