Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+0,4x-7,48=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-0,4±\sqrt{0,4^{2}-4\left(-7,48\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0,4 for b, and -7,48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0,4±\sqrt{0,16-4\left(-7,48\right)}}{2}
Square 0,4 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0,4±\sqrt{\frac{4+748}{25}}}{2}
Multiply -4 times -7,48.
x=\frac{-0,4±\sqrt{30,08}}{2}
Add 0,16 to 29,92 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0,4±\frac{4\sqrt{47}}{5}}{2}
Take the square root of 30,08.
x=\frac{4\sqrt{47}-2}{2\times 5}
Now solve the equation x=\frac{-0,4±\frac{4\sqrt{47}}{5}}{2} when ± is plus. Add -0,4 to \frac{4\sqrt{47}}{5}.
x=\frac{2\sqrt{47}-1}{5}
Divide \frac{-2+4\sqrt{47}}{5} by 2.
x=\frac{-4\sqrt{47}-2}{2\times 5}
Now solve the equation x=\frac{-0,4±\frac{4\sqrt{47}}{5}}{2} when ± is minus. Subtract \frac{4\sqrt{47}}{5} from -0,4.
x=\frac{-2\sqrt{47}-1}{5}
Divide \frac{-2-4\sqrt{47}}{5} by 2.
x=\frac{2\sqrt{47}-1}{5} x=\frac{-2\sqrt{47}-1}{5}
The equation is now solved.
x^{2}+0,4x-7,48=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+0,4x-7,48-\left(-7,48\right)=-\left(-7,48\right)
Add 7,48 to both sides of the equation.
x^{2}+0,4x=-\left(-7,48\right)
Subtracting -7,48 from itself leaves 0.
x^{2}+0,4x=7,48
Subtract -7,48 from 0.
x^{2}+0,4x+0,2^{2}=7,48+0,2^{2}
Divide 0,4, the coefficient of the x term, by 2 to get 0,2. Then add the square of 0,2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0,4x+0,04=\frac{187+1}{25}
Square 0,2 by squaring both the numerator and the denominator of the fraction.
x^{2}+0,4x+0,04=7,52
Add 7,48 to 0,04 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0,2\right)^{2}=7,52
Factor x^{2}+0,4x+0,04. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0,2\right)^{2}}=\sqrt{7,52}
Take the square root of both sides of the equation.
x+0,2=\frac{2\sqrt{47}}{5} x+0,2=-\frac{2\sqrt{47}}{5}
Simplify.
x=\frac{2\sqrt{47}-1}{5} x=\frac{-2\sqrt{47}-1}{5}
Subtract 0,2 from both sides of the equation.