Solve for x
x=-3
x=2
Graph
Share
Copied to clipboard
x^{2}+x^{2}-6x+9=5+8\left(2-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-6x+9=5+8\left(2-x\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x+9=5+16-8x
Use the distributive property to multiply 8 by 2-x.
2x^{2}-6x+9=21-8x
Add 5 and 16 to get 21.
2x^{2}-6x+9-21=-8x
Subtract 21 from both sides.
2x^{2}-6x-12=-8x
Subtract 21 from 9 to get -12.
2x^{2}-6x-12+8x=0
Add 8x to both sides.
2x^{2}+2x-12=0
Combine -6x and 8x to get 2x.
x^{2}+x-6=0
Divide both sides by 2.
a+b=1 ab=1\left(-6\right)=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=-2 b=3
The solution is the pair that gives sum 1.
\left(x^{2}-2x\right)+\left(3x-6\right)
Rewrite x^{2}+x-6 as \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
Factor out x in the first and 3 in the second group.
\left(x-2\right)\left(x+3\right)
Factor out common term x-2 by using distributive property.
x=2 x=-3
To find equation solutions, solve x-2=0 and x+3=0.
x^{2}+x^{2}-6x+9=5+8\left(2-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-6x+9=5+8\left(2-x\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x+9=5+16-8x
Use the distributive property to multiply 8 by 2-x.
2x^{2}-6x+9=21-8x
Add 5 and 16 to get 21.
2x^{2}-6x+9-21=-8x
Subtract 21 from both sides.
2x^{2}-6x-12=-8x
Subtract 21 from 9 to get -12.
2x^{2}-6x-12+8x=0
Add 8x to both sides.
2x^{2}+2x-12=0
Combine -6x and 8x to get 2x.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\left(-12\right)}}{2\times 2}
Square 2.
x=\frac{-2±\sqrt{4-8\left(-12\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-2±\sqrt{4+96}}{2\times 2}
Multiply -8 times -12.
x=\frac{-2±\sqrt{100}}{2\times 2}
Add 4 to 96.
x=\frac{-2±10}{2\times 2}
Take the square root of 100.
x=\frac{-2±10}{4}
Multiply 2 times 2.
x=\frac{8}{4}
Now solve the equation x=\frac{-2±10}{4} when ± is plus. Add -2 to 10.
x=2
Divide 8 by 4.
x=-\frac{12}{4}
Now solve the equation x=\frac{-2±10}{4} when ± is minus. Subtract 10 from -2.
x=-3
Divide -12 by 4.
x=2 x=-3
The equation is now solved.
x^{2}+x^{2}-6x+9=5+8\left(2-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-6x+9=5+8\left(2-x\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x+9=5+16-8x
Use the distributive property to multiply 8 by 2-x.
2x^{2}-6x+9=21-8x
Add 5 and 16 to get 21.
2x^{2}-6x+9+8x=21
Add 8x to both sides.
2x^{2}+2x+9=21
Combine -6x and 8x to get 2x.
2x^{2}+2x=21-9
Subtract 9 from both sides.
2x^{2}+2x=12
Subtract 9 from 21 to get 12.
\frac{2x^{2}+2x}{2}=\frac{12}{2}
Divide both sides by 2.
x^{2}+\frac{2}{2}x=\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+x=\frac{12}{2}
Divide 2 by 2.
x^{2}+x=6
Divide 12 by 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Simplify.
x=2 x=-3
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}