Solve for x
x = \frac{7 \sqrt{3} + 1}{2} \approx 6.562177826
x=\frac{1-7\sqrt{3}}{2}\approx -5.562177826
Graph
Share
Copied to clipboard
x^{2}+x^{2}-2x+1=74
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-2x+1=74
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2x+1-74=0
Subtract 74 from both sides.
2x^{2}-2x-73=0
Subtract 74 from 1 to get -73.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-73\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2 for b, and -73 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-73\right)}}{2\times 2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-73\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-2\right)±\sqrt{4+584}}{2\times 2}
Multiply -8 times -73.
x=\frac{-\left(-2\right)±\sqrt{588}}{2\times 2}
Add 4 to 584.
x=\frac{-\left(-2\right)±14\sqrt{3}}{2\times 2}
Take the square root of 588.
x=\frac{2±14\sqrt{3}}{2\times 2}
The opposite of -2 is 2.
x=\frac{2±14\sqrt{3}}{4}
Multiply 2 times 2.
x=\frac{14\sqrt{3}+2}{4}
Now solve the equation x=\frac{2±14\sqrt{3}}{4} when ± is plus. Add 2 to 14\sqrt{3}.
x=\frac{7\sqrt{3}+1}{2}
Divide 2+14\sqrt{3} by 4.
x=\frac{2-14\sqrt{3}}{4}
Now solve the equation x=\frac{2±14\sqrt{3}}{4} when ± is minus. Subtract 14\sqrt{3} from 2.
x=\frac{1-7\sqrt{3}}{2}
Divide 2-14\sqrt{3} by 4.
x=\frac{7\sqrt{3}+1}{2} x=\frac{1-7\sqrt{3}}{2}
The equation is now solved.
x^{2}+x^{2}-2x+1=74
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-2x+1=74
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2x=74-1
Subtract 1 from both sides.
2x^{2}-2x=73
Subtract 1 from 74 to get 73.
\frac{2x^{2}-2x}{2}=\frac{73}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{73}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-x=\frac{73}{2}
Divide -2 by 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{73}{2}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{73}{2}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{147}{4}
Add \frac{73}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{147}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{147}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{7\sqrt{3}}{2} x-\frac{1}{2}=-\frac{7\sqrt{3}}{2}
Simplify.
x=\frac{7\sqrt{3}+1}{2} x=\frac{1-7\sqrt{3}}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}