Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x^{2}+20x+100=50^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+10\right)^{2}.
2x^{2}+20x+100=50^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+20x+100=2500
Calculate 50 to the power of 2 and get 2500.
2x^{2}+20x+100-2500=0
Subtract 2500 from both sides.
2x^{2}+20x-2400=0
Subtract 2500 from 100 to get -2400.
x^{2}+10x-1200=0
Divide both sides by 2.
a+b=10 ab=1\left(-1200\right)=-1200
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-1200. To find a and b, set up a system to be solved.
-1,1200 -2,600 -3,400 -4,300 -5,240 -6,200 -8,150 -10,120 -12,100 -15,80 -16,75 -20,60 -24,50 -25,48 -30,40
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1200.
-1+1200=1199 -2+600=598 -3+400=397 -4+300=296 -5+240=235 -6+200=194 -8+150=142 -10+120=110 -12+100=88 -15+80=65 -16+75=59 -20+60=40 -24+50=26 -25+48=23 -30+40=10
Calculate the sum for each pair.
a=-30 b=40
The solution is the pair that gives sum 10.
\left(x^{2}-30x\right)+\left(40x-1200\right)
Rewrite x^{2}+10x-1200 as \left(x^{2}-30x\right)+\left(40x-1200\right).
x\left(x-30\right)+40\left(x-30\right)
Factor out x in the first and 40 in the second group.
\left(x-30\right)\left(x+40\right)
Factor out common term x-30 by using distributive property.
x=30 x=-40
To find equation solutions, solve x-30=0 and x+40=0.
x^{2}+x^{2}+20x+100=50^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+10\right)^{2}.
2x^{2}+20x+100=50^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+20x+100=2500
Calculate 50 to the power of 2 and get 2500.
2x^{2}+20x+100-2500=0
Subtract 2500 from both sides.
2x^{2}+20x-2400=0
Subtract 2500 from 100 to get -2400.
x=\frac{-20±\sqrt{20^{2}-4\times 2\left(-2400\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 20 for b, and -2400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 2\left(-2400\right)}}{2\times 2}
Square 20.
x=\frac{-20±\sqrt{400-8\left(-2400\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-20±\sqrt{400+19200}}{2\times 2}
Multiply -8 times -2400.
x=\frac{-20±\sqrt{19600}}{2\times 2}
Add 400 to 19200.
x=\frac{-20±140}{2\times 2}
Take the square root of 19600.
x=\frac{-20±140}{4}
Multiply 2 times 2.
x=\frac{120}{4}
Now solve the equation x=\frac{-20±140}{4} when ± is plus. Add -20 to 140.
x=30
Divide 120 by 4.
x=-\frac{160}{4}
Now solve the equation x=\frac{-20±140}{4} when ± is minus. Subtract 140 from -20.
x=-40
Divide -160 by 4.
x=30 x=-40
The equation is now solved.
x^{2}+x^{2}+20x+100=50^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+10\right)^{2}.
2x^{2}+20x+100=50^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+20x+100=2500
Calculate 50 to the power of 2 and get 2500.
2x^{2}+20x=2500-100
Subtract 100 from both sides.
2x^{2}+20x=2400
Subtract 100 from 2500 to get 2400.
\frac{2x^{2}+20x}{2}=\frac{2400}{2}
Divide both sides by 2.
x^{2}+\frac{20}{2}x=\frac{2400}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+10x=\frac{2400}{2}
Divide 20 by 2.
x^{2}+10x=1200
Divide 2400 by 2.
x^{2}+10x+5^{2}=1200+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=1200+25
Square 5.
x^{2}+10x+25=1225
Add 1200 to 25.
\left(x+5\right)^{2}=1225
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{1225}
Take the square root of both sides of the equation.
x+5=35 x+5=-35
Simplify.
x=30 x=-40
Subtract 5 from both sides of the equation.