Solve for x
x=-6
x=5
Graph
Share
Copied to clipboard
x^{2}+x^{2}+2x+1-61=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+2x+1-61=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x-60=0
Subtract 61 from 1 to get -60.
x^{2}+x-30=0
Divide both sides by 2.
a+b=1 ab=1\left(-30\right)=-30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-30. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=-5 b=6
The solution is the pair that gives sum 1.
\left(x^{2}-5x\right)+\left(6x-30\right)
Rewrite x^{2}+x-30 as \left(x^{2}-5x\right)+\left(6x-30\right).
x\left(x-5\right)+6\left(x-5\right)
Factor out x in the first and 6 in the second group.
\left(x-5\right)\left(x+6\right)
Factor out common term x-5 by using distributive property.
x=5 x=-6
To find equation solutions, solve x-5=0 and x+6=0.
x^{2}+x^{2}+2x+1-61=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+2x+1-61=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x-60=0
Subtract 61 from 1 to get -60.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-60\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\left(-60\right)}}{2\times 2}
Square 2.
x=\frac{-2±\sqrt{4-8\left(-60\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-2±\sqrt{4+480}}{2\times 2}
Multiply -8 times -60.
x=\frac{-2±\sqrt{484}}{2\times 2}
Add 4 to 480.
x=\frac{-2±22}{2\times 2}
Take the square root of 484.
x=\frac{-2±22}{4}
Multiply 2 times 2.
x=\frac{20}{4}
Now solve the equation x=\frac{-2±22}{4} when ± is plus. Add -2 to 22.
x=5
Divide 20 by 4.
x=-\frac{24}{4}
Now solve the equation x=\frac{-2±22}{4} when ± is minus. Subtract 22 from -2.
x=-6
Divide -24 by 4.
x=5 x=-6
The equation is now solved.
x^{2}+x^{2}+2x+1-61=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+2x+1-61=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x-60=0
Subtract 61 from 1 to get -60.
2x^{2}+2x=60
Add 60 to both sides. Anything plus zero gives itself.
\frac{2x^{2}+2x}{2}=\frac{60}{2}
Divide both sides by 2.
x^{2}+\frac{2}{2}x=\frac{60}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+x=\frac{60}{2}
Divide 2 by 2.
x^{2}+x=30
Divide 60 by 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=30+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{121}{4}
Add 30 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{11}{2} x+\frac{1}{2}=-\frac{11}{2}
Simplify.
x=5 x=-6
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}