Solve for x
x=-300
x=600
Graph
Share
Copied to clipboard
x^{2}+360000+600x=3x^{2}
Calculate 600 to the power of 2 and get 360000.
x^{2}+360000+600x-3x^{2}=0
Subtract 3x^{2} from both sides.
-2x^{2}+360000+600x=0
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+600x+360000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-600±\sqrt{600^{2}-4\left(-2\right)\times 360000}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 600 for b, and 360000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-600±\sqrt{360000-4\left(-2\right)\times 360000}}{2\left(-2\right)}
Square 600.
x=\frac{-600±\sqrt{360000+8\times 360000}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-600±\sqrt{360000+2880000}}{2\left(-2\right)}
Multiply 8 times 360000.
x=\frac{-600±\sqrt{3240000}}{2\left(-2\right)}
Add 360000 to 2880000.
x=\frac{-600±1800}{2\left(-2\right)}
Take the square root of 3240000.
x=\frac{-600±1800}{-4}
Multiply 2 times -2.
x=\frac{1200}{-4}
Now solve the equation x=\frac{-600±1800}{-4} when ± is plus. Add -600 to 1800.
x=-300
Divide 1200 by -4.
x=-\frac{2400}{-4}
Now solve the equation x=\frac{-600±1800}{-4} when ± is minus. Subtract 1800 from -600.
x=600
Divide -2400 by -4.
x=-300 x=600
The equation is now solved.
x^{2}+360000+600x=3x^{2}
Calculate 600 to the power of 2 and get 360000.
x^{2}+360000+600x-3x^{2}=0
Subtract 3x^{2} from both sides.
-2x^{2}+360000+600x=0
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+600x=-360000
Subtract 360000 from both sides. Anything subtracted from zero gives its negation.
\frac{-2x^{2}+600x}{-2}=-\frac{360000}{-2}
Divide both sides by -2.
x^{2}+\frac{600}{-2}x=-\frac{360000}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-300x=-\frac{360000}{-2}
Divide 600 by -2.
x^{2}-300x=180000
Divide -360000 by -2.
x^{2}-300x+\left(-150\right)^{2}=180000+\left(-150\right)^{2}
Divide -300, the coefficient of the x term, by 2 to get -150. Then add the square of -150 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-300x+22500=180000+22500
Square -150.
x^{2}-300x+22500=202500
Add 180000 to 22500.
\left(x-150\right)^{2}=202500
Factor x^{2}-300x+22500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-150\right)^{2}}=\sqrt{202500}
Take the square root of both sides of the equation.
x-150=450 x-150=-450
Simplify.
x=600 x=-300
Add 150 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}