Solve for x
x=1
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
Graph
Share
Copied to clipboard
x^{2}+4x^{2}-24x+36+2x+4\left(2x-6\right)-3=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-6\right)^{2}.
5x^{2}-24x+36+2x+4\left(2x-6\right)-3=0
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}-22x+36+4\left(2x-6\right)-3=0
Combine -24x and 2x to get -22x.
5x^{2}-22x+36+8x-24-3=0
Use the distributive property to multiply 4 by 2x-6.
5x^{2}-14x+36-24-3=0
Combine -22x and 8x to get -14x.
5x^{2}-14x+12-3=0
Subtract 24 from 36 to get 12.
5x^{2}-14x+9=0
Subtract 3 from 12 to get 9.
a+b=-14 ab=5\times 9=45
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
-1,-45 -3,-15 -5,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 45.
-1-45=-46 -3-15=-18 -5-9=-14
Calculate the sum for each pair.
a=-9 b=-5
The solution is the pair that gives sum -14.
\left(5x^{2}-9x\right)+\left(-5x+9\right)
Rewrite 5x^{2}-14x+9 as \left(5x^{2}-9x\right)+\left(-5x+9\right).
x\left(5x-9\right)-\left(5x-9\right)
Factor out x in the first and -1 in the second group.
\left(5x-9\right)\left(x-1\right)
Factor out common term 5x-9 by using distributive property.
x=\frac{9}{5} x=1
To find equation solutions, solve 5x-9=0 and x-1=0.
x^{2}+4x^{2}-24x+36+2x+4\left(2x-6\right)-3=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-6\right)^{2}.
5x^{2}-24x+36+2x+4\left(2x-6\right)-3=0
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}-22x+36+4\left(2x-6\right)-3=0
Combine -24x and 2x to get -22x.
5x^{2}-22x+36+8x-24-3=0
Use the distributive property to multiply 4 by 2x-6.
5x^{2}-14x+36-24-3=0
Combine -22x and 8x to get -14x.
5x^{2}-14x+12-3=0
Subtract 24 from 36 to get 12.
5x^{2}-14x+9=0
Subtract 3 from 12 to get 9.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 5\times 9}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -14 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 5\times 9}}{2\times 5}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-20\times 9}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-14\right)±\sqrt{196-180}}{2\times 5}
Multiply -20 times 9.
x=\frac{-\left(-14\right)±\sqrt{16}}{2\times 5}
Add 196 to -180.
x=\frac{-\left(-14\right)±4}{2\times 5}
Take the square root of 16.
x=\frac{14±4}{2\times 5}
The opposite of -14 is 14.
x=\frac{14±4}{10}
Multiply 2 times 5.
x=\frac{18}{10}
Now solve the equation x=\frac{14±4}{10} when ± is plus. Add 14 to 4.
x=\frac{9}{5}
Reduce the fraction \frac{18}{10} to lowest terms by extracting and canceling out 2.
x=\frac{10}{10}
Now solve the equation x=\frac{14±4}{10} when ± is minus. Subtract 4 from 14.
x=1
Divide 10 by 10.
x=\frac{9}{5} x=1
The equation is now solved.
x^{2}+4x^{2}-24x+36+2x+4\left(2x-6\right)-3=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-6\right)^{2}.
5x^{2}-24x+36+2x+4\left(2x-6\right)-3=0
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}-22x+36+4\left(2x-6\right)-3=0
Combine -24x and 2x to get -22x.
5x^{2}-22x+36+8x-24-3=0
Use the distributive property to multiply 4 by 2x-6.
5x^{2}-14x+36-24-3=0
Combine -22x and 8x to get -14x.
5x^{2}-14x+12-3=0
Subtract 24 from 36 to get 12.
5x^{2}-14x+9=0
Subtract 3 from 12 to get 9.
5x^{2}-14x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{5x^{2}-14x}{5}=-\frac{9}{5}
Divide both sides by 5.
x^{2}-\frac{14}{5}x=-\frac{9}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{14}{5}x+\left(-\frac{7}{5}\right)^{2}=-\frac{9}{5}+\left(-\frac{7}{5}\right)^{2}
Divide -\frac{14}{5}, the coefficient of the x term, by 2 to get -\frac{7}{5}. Then add the square of -\frac{7}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{5}x+\frac{49}{25}=-\frac{9}{5}+\frac{49}{25}
Square -\frac{7}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14}{5}x+\frac{49}{25}=\frac{4}{25}
Add -\frac{9}{5} to \frac{49}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{5}\right)^{2}=\frac{4}{25}
Factor x^{2}-\frac{14}{5}x+\frac{49}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
Take the square root of both sides of the equation.
x-\frac{7}{5}=\frac{2}{5} x-\frac{7}{5}=-\frac{2}{5}
Simplify.
x=\frac{9}{5} x=1
Add \frac{7}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}