Solve for x
x=2
x=-2
Graph
Share
Copied to clipboard
x^{2}+2^{2}\left(\sqrt{3}\right)^{2}=\left(2x\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
x^{2}+4\left(\sqrt{3}\right)^{2}=\left(2x\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+4\times 3=\left(2x\right)^{2}
The square of \sqrt{3} is 3.
x^{2}+12=\left(2x\right)^{2}
Multiply 4 and 3 to get 12.
x^{2}+12=2^{2}x^{2}
Expand \left(2x\right)^{2}.
x^{2}+12=4x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+12-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+12=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-12}{-3}
Divide both sides by -3.
x^{2}=4
Divide -12 by -3 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
x^{2}+2^{2}\left(\sqrt{3}\right)^{2}=\left(2x\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
x^{2}+4\left(\sqrt{3}\right)^{2}=\left(2x\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+4\times 3=\left(2x\right)^{2}
The square of \sqrt{3} is 3.
x^{2}+12=\left(2x\right)^{2}
Multiply 4 and 3 to get 12.
x^{2}+12=2^{2}x^{2}
Expand \left(2x\right)^{2}.
x^{2}+12=4x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+12-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+12=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 0 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)\times 12}}{2\left(-3\right)}
Square 0.
x=\frac{0±\sqrt{12\times 12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{0±\sqrt{144}}{2\left(-3\right)}
Multiply 12 times 12.
x=\frac{0±12}{2\left(-3\right)}
Take the square root of 144.
x=\frac{0±12}{-6}
Multiply 2 times -3.
x=-2
Now solve the equation x=\frac{0±12}{-6} when ± is plus. Divide 12 by -6.
x=2
Now solve the equation x=\frac{0±12}{-6} when ± is minus. Divide -12 by -6.
x=-2 x=2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}