Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2^{2}\left(\sqrt{3}\right)^{2}=\left(2x\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
x^{2}+4\left(\sqrt{3}\right)^{2}=\left(2x\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+4\times 3=\left(2x\right)^{2}
The square of \sqrt{3} is 3.
x^{2}+12=\left(2x\right)^{2}
Multiply 4 and 3 to get 12.
x^{2}+12=2^{2}x^{2}
Expand \left(2x\right)^{2}.
x^{2}+12=4x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+12-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+12=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-12}{-3}
Divide both sides by -3.
x^{2}=4
Divide -12 by -3 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
x^{2}+2^{2}\left(\sqrt{3}\right)^{2}=\left(2x\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
x^{2}+4\left(\sqrt{3}\right)^{2}=\left(2x\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+4\times 3=\left(2x\right)^{2}
The square of \sqrt{3} is 3.
x^{2}+12=\left(2x\right)^{2}
Multiply 4 and 3 to get 12.
x^{2}+12=2^{2}x^{2}
Expand \left(2x\right)^{2}.
x^{2}+12=4x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+12-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+12=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 0 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)\times 12}}{2\left(-3\right)}
Square 0.
x=\frac{0±\sqrt{12\times 12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{0±\sqrt{144}}{2\left(-3\right)}
Multiply 12 times 12.
x=\frac{0±12}{2\left(-3\right)}
Take the square root of 144.
x=\frac{0±12}{-6}
Multiply 2 times -3.
x=-2
Now solve the equation x=\frac{0±12}{-6} when ± is plus. Divide 12 by -6.
x=2
Now solve the equation x=\frac{0±12}{-6} when ± is minus. Divide -12 by -6.
x=-2 x=2
The equation is now solved.