Solve for x
x=\sqrt{138}+6\approx 17.747340124
x=6-\sqrt{138}\approx -5.747340124
Graph
Share
Copied to clipboard
x^{2}+144-24x+x^{2}=348
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12-x\right)^{2}.
2x^{2}+144-24x=348
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+144-24x-348=0
Subtract 348 from both sides.
2x^{2}-204-24x=0
Subtract 348 from 144 to get -204.
2x^{2}-24x-204=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\left(-204\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -24 for b, and -204 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2\left(-204\right)}}{2\times 2}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-8\left(-204\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-24\right)±\sqrt{576+1632}}{2\times 2}
Multiply -8 times -204.
x=\frac{-\left(-24\right)±\sqrt{2208}}{2\times 2}
Add 576 to 1632.
x=\frac{-\left(-24\right)±4\sqrt{138}}{2\times 2}
Take the square root of 2208.
x=\frac{24±4\sqrt{138}}{2\times 2}
The opposite of -24 is 24.
x=\frac{24±4\sqrt{138}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{138}+24}{4}
Now solve the equation x=\frac{24±4\sqrt{138}}{4} when ± is plus. Add 24 to 4\sqrt{138}.
x=\sqrt{138}+6
Divide 24+4\sqrt{138} by 4.
x=\frac{24-4\sqrt{138}}{4}
Now solve the equation x=\frac{24±4\sqrt{138}}{4} when ± is minus. Subtract 4\sqrt{138} from 24.
x=6-\sqrt{138}
Divide 24-4\sqrt{138} by 4.
x=\sqrt{138}+6 x=6-\sqrt{138}
The equation is now solved.
x^{2}+144-24x+x^{2}=348
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12-x\right)^{2}.
2x^{2}+144-24x=348
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-24x=348-144
Subtract 144 from both sides.
2x^{2}-24x=204
Subtract 144 from 348 to get 204.
\frac{2x^{2}-24x}{2}=\frac{204}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{24}{2}\right)x=\frac{204}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-12x=\frac{204}{2}
Divide -24 by 2.
x^{2}-12x=102
Divide 204 by 2.
x^{2}-12x+\left(-6\right)^{2}=102+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=102+36
Square -6.
x^{2}-12x+36=138
Add 102 to 36.
\left(x-6\right)^{2}=138
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{138}
Take the square root of both sides of the equation.
x-6=\sqrt{138} x-6=-\sqrt{138}
Simplify.
x=\sqrt{138}+6 x=6-\sqrt{138}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}