Solve for y
y=-\left(\sqrt{5}+2\right)\left(x^{2}-3\sqrt{5}-10\right)
Solve for x (complex solution)
x=-\sqrt{-\sqrt{5}y+2y+3\sqrt{5}+10}
x=\sqrt{-\sqrt{5}y+2y+3\sqrt{5}+10}
Solve for x
x=\sqrt{-\sqrt{5}y+2y+3\sqrt{5}+10}
x=-\sqrt{-\sqrt{5}y+2y+3\sqrt{5}+10}\text{, }y\leq 16\sqrt{5}+35
Graph
Share
Copied to clipboard
x^{2}-2y+\sqrt{5}y=10+3\sqrt{5}
Use the distributive property to multiply -2+\sqrt{5} by y.
-2y+\sqrt{5}y=10+3\sqrt{5}-x^{2}
Subtract x^{2} from both sides.
\left(-2+\sqrt{5}\right)y=10+3\sqrt{5}-x^{2}
Combine all terms containing y.
\left(\sqrt{5}-2\right)y=-x^{2}+3\sqrt{5}+10
The equation is in standard form.
\frac{\left(\sqrt{5}-2\right)y}{\sqrt{5}-2}=\frac{-x^{2}+3\sqrt{5}+10}{\sqrt{5}-2}
Divide both sides by -2+\sqrt{5}.
y=\frac{-x^{2}+3\sqrt{5}+10}{\sqrt{5}-2}
Dividing by -2+\sqrt{5} undoes the multiplication by -2+\sqrt{5}.
y=\left(\sqrt{5}+2\right)\left(-x^{2}+3\sqrt{5}+10\right)
Divide 10+3\sqrt{5}-x^{2} by -2+\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}