Skip to main content
Solve for y
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2y+\sqrt{5}y=10+3\sqrt{5}
Use the distributive property to multiply -2+\sqrt{5} by y.
-2y+\sqrt{5}y=10+3\sqrt{5}-x^{2}
Subtract x^{2} from both sides.
\left(-2+\sqrt{5}\right)y=10+3\sqrt{5}-x^{2}
Combine all terms containing y.
\left(\sqrt{5}-2\right)y=-x^{2}+3\sqrt{5}+10
The equation is in standard form.
\frac{\left(\sqrt{5}-2\right)y}{\sqrt{5}-2}=\frac{-x^{2}+3\sqrt{5}+10}{\sqrt{5}-2}
Divide both sides by -2+\sqrt{5}.
y=\frac{-x^{2}+3\sqrt{5}+10}{\sqrt{5}-2}
Dividing by -2+\sqrt{5} undoes the multiplication by -2+\sqrt{5}.
y=\left(\sqrt{5}+2\right)\left(-x^{2}+3\sqrt{5}+10\right)
Divide 10+3\sqrt{5}-x^{2} by -2+\sqrt{5}.